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The Barton Springs Segment, part of the karstic Edwards aquifer in Central 

Texas, is a Sole Source aquifer, is habitat to rare karst species, and provides water 

to a well-loved municipal swimming pool, yet its hydrogeologic properties remain 

insufficiently understood.  For this study, the hydrogeologic characteristics of the 

Barton Springs Segment were investigated using several approaches, including 

mapping of hydrostratigraphic units and faults, measurement of upland 

infiltration, groundwater traces, and aquifer tests. The depositional environment, 

diagenesis, fracturing, down-dropped and dipping faulted blocks, and subsequent 

dissolution were determined to play important roles in controlling groundwater 

flow-path development within the Barton Springs Segment. In particular, 

downdropped fault blocks create groundwater gradients to the southeast that 

influence flow in the Edwards outcrop area. Upland internal drainage basins were 

found to be extremely efficient at conveying recharge to the underlying aquifer. 

The maturity of natural internal drainage sinkholes can be measured by its bowl 
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volume, which grows in proportion to the catchment area it captures. A 19-hectare 

internal drainage basin, HQ Flat sinkhole, was monitored for rainfall, 

evapotranspiration, soil moisture, and discrete runoff to the cave drain. During a 

505-day period, 5.5% of measured rainfall entered the cave drain as discrete 

recharge, 26% of measured rainfall infiltrated through soils on the slopes, and the 

remaining 68% was lost through evapotranspiration.  This amount of upland 

infiltration is consistent with infiltration measurements in other karst areas and is 

much larger than the 1% upland recharge of rainfall that was previously 

estimated. A chloride mass balance indicates that at the adjacent Tabor research 

site, about 50% of rainfall infiltrates to a 6-meter depth.  Dye-tracing and pump 

tests demonstrated that primary and secondary groundwater flow paths are the 

major influence on transmissivity within the Barton Springs Segment. 

Groundwater tracing breakthroughs reveal very high advection and relatively low 

dispersion. Drawdown response to pump tests indicates a very high degree of 

anisotropy, controlled by location of groundwater flow paths.  Overall the Barton 

Springs Segment is a mature karst aquifer with highly developed rapid, discrete 

network for both recharge and groundwater-flow.  
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Chapter 1. Introduction 

It is a difficult task to characterize the properties of a karst aquifer such as the 

Barton Springs Segment of the Edwards Aquifer (Barton Springs Segment), in Travis and 

Hays Counties, Texas (Figure 1.1). Groundwater studies frequently rely on limited 

observations and the assumption that subsurface properties are similar throughout 

(homogeneous) in order to characterize the aquifer.  Limestone aquifers are even more 

challenging in that uneven distribution of solution-enlarged conduits creates exaggerated 

heterogeneity of aquifer properties. The Barton Springs Segment is intensely fractured 

and faulted compared to areas immediately to its east and west. This fracturing imparts a 

high degree of anisotropy to the aquifer.  Not only is the aquifer complex compared to 

other aquifers not fractured or composed of soluble rock (karst), but the Barton Springs 

Segment is cryptic (Appendix A). Urban expansion, ranch and agricultural practices, and 

dam construction on local creeks and rivers have obscured observations and added 

complexity to an already complicated system.     

The Barton Springs Segment is an important water supply, and is a federally-

designated as a Sole-Source Aquifer south of the Williamson Creek watershed (Federal 

Register, 1988). The cities of Buda, Mountain City, Hays, Manchaca, and Sunset Valley 

depend on it for their water supply. The Barton Springs Segment is part of the larger 

Balcones Fault Zone portion of the Edwards Aquifer that include the Northern and San 

Antonio Segments (Figure 1.2). The aquifer provides economical water sources for local 

industries in the sole source area. Preservation of the Barton Springs Segment insures 

future generations have clean water supplies and are not left with expensive mitigation 

resulting from poor or short-term planning (Ernst et al., 2007; Freeman, 2008).  Most of 

the water flowing through the Barton Springs Segment discharges at Barton Springs that 

is the sole home for the endangered aquatic Barton Springs salamander (Eurycea 

sosorum; Federal Register, 1997) and a recently distinguished blind aquatic salamander 

(Eurycea waterlooensis). Barton Springs pool also provides a source of funding for the 

City of Austin through paid admission, although there is a larger underlying critical 



 2

importance of local natural resources that is easily overlooked. The natural resources of 

the Central Texas area attracts populations just as the springs along the edge of the 

Edwards Aquifer attracted earlier settlers that were originally sustained by their flows. 

Local character and economy may depend on the sustenance of natural resources like 

Barton Springs and natural areas of the Edwards Aquifer (Lerner and Poole, 1999; 

Sherer, 2006; Crompton, 2007a; Crompton, 2007b; Ernst et al., 2007; Lynch, 2007; 

Nowak et al., 2007). 

This chapter examines heterogeneity and anisotropy as they relate to karst 

aquifers and the Barton Springs Segment of the Edwards Aquifer (Barton Springs 

Segment).  Spring discharge from the Barton Springs Segment is introduced in this 

chapter. Appendix A examines how conceptual models of the Barton Springs Segment 

and Edwards Aquifer have changed over time and what factors may influence how we 

view the aquifer. The scope of this study is introduced in this chapter. 

1.1. ANISOTROPY AND HETEROGENEITY  
Anisotropy and heterogeneity in groundwater systems have often been discussed 

primarily to evaluate if there is a scale at which the system can be modeled using a more 

simplified and less data-intensive equivalent porous media approach. In karst terranes, 

which produce about 25% of the world’s potable water, understanding anisotropy and 

heterogeneity is particularly challenging. Frequently models fail to adequately 

characterize karst aquifers that are far more complex than the simplifying models allow. 

However, such understanding is important in order to protect these sensitive resources 

from surface impacts (Pairise and Gunn, 2007). Groundwater flow has been related to 

fracture trends in consolidated carbonate rocks (Mayer and Sharp, 1995; Sharp, 1998).  

Some findings suggest that as the system size increases in fractured karst aquifers, more 

larger conduits dominate the flow system (Zahm, 1998; Sharp et al., 2000; Halihan et al., 

2000). In this view, as the system size increases one may expect a greater discrete 

component of flow.  In karst systems, dissolution is six orders of magnitude greater in 

fractured rock (Kiraly, 2002). 
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One approach for addressing heterogeneity is to find a suitable scale or 

Representative Elemental Volume (REV) that is relatively homogenous.  Domenico and 

Schwartz (1998) noted the following for defining a REV: 

1) The tests for a REV should be at the same scale as the area of interest; 
2) Some models can be utilized for specific purposes without demonstrating a 

REV or quantifying the size limit of the REV; 
3) Some systems may not have an REV at any scale; and 
4) If the continuity condition does not apply at the scale of the problem, then:  

(a) discrete characterization is necessary,  
(b) turbulent rather than Darcy’s Law flow conditions may predominate if the 

apertures are large, and  
(c) hydraulic conductivity may vary with changes in hydraulic head. 
 

Parameters or properties may show different patterns over time and space such that the 

REV may differ within a system for each parameter. 

The heterogeneity of karst aquifers has been examined by comparing large-scale 

numerical simulations with field data. Worthington (2003) created a groundwater 

MODFLOW model of the Mammoth Cave area and compared the results with extensive 

groundwater tracing and water-level data.  He found a mean absolute potentiometric head 

error of 12 m, an under-measurement of Turnhole Spring discharge of 94%, and 

simulated groundwater velocities two to three orders of magnitude lower than measured 

velocities. 

Attempts to simplify complex recharge and flow conditions in models can result 

in highly inaccurate or subjective results (Kiraly, 2002).  One limitation of testing for 

REV by model comparison is that many different combinations of input parameters can 

be used to achieve similar groundwater heads and discharge. Several examples follow. 

A groundwater model was used to establish time-of-travel protection zones in the 

limestone Biscayne Aquifer of Miami-Dade County. Later tracing from injection wells 

100 m away from the wellfield measured mean groundwater flow rates to be one to two 

orders of magnitude faster than those derived from the simulation (Renken et al., 2005). 
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To delineate the wellhead protection zone for three production wells near 

Walkersville, Maryland, the Maryland Dept. of the Environment identified 5-year and 10-

year time-of-travel radii around the well field using a numerical model. However, 

groundwater tracers injected by Aley and Field (1993) from the “5-year time of travel” 

contour arrived at the three production wells 17.5 hours after injection.  Several years 

later about 900,000 gallons of raw sewage of spilled in the “8-year time of travel zone”, 

as originally delineated by the wellhead protection numerical model (Aley, 2007, 

personal communication). Dye introduced at the spill site first arrived at the production 

wells in 11 to 13 days. A similar travel time was shown for fecal coliform from the spill, 

which peaked at about 20,000 colonies per 100 ml. Cryptosporidium was detected in the 

raw sewage that discharged into the karst aquifer (Aley, 2007, personal communication). 

The delineation of the wellhead protection zone using dye tracing helped prevent a major 

health problem as city, county, and state officials took prompt action to develop alternate 

water supplies. This case also demonstrates how modeled groundwater travel times based 

on limited data differ from directly traced travel times.  

The groundwater basin for Dewitt Spring, a Paleozoic carbonate spring near 

Logan, Utah, was delineated based on the mapped geological framework (Eckoff, 

Watson, and Preator Engineering, 1996). Darcian calculations, based on the groundwater 

gradient, delineated a time-of-travel zone of up to a 15-year time maximum for travel 8 

km across the groundwater basin (State of Utah, 1995). Five traces injected beyond the 

calculated 3-year time-of-travel arrived within 8 to 31 days (Spangler, 2002). Three of 

the five tracers arriving at Dewitt Springs were injected beyond the originally delineated 

groundwater basin (Spangler, 2002).  

Smith et al. (2005) compared a MODFLOW model of the Barton Springs 

Segment of the Edwards Aquifer (or Barton Springs Segment) to discrete flow data from 

groundwater tracing. The model was useful for estimating spring flows and 

potentiometric heads, but it failed to show convergent and divergent flow routes observed 

through groundwater tracing. The model underestimated tracer arrival times by three to 

five orders of magnitude. However, these same modeling results led some researchers to 
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conclude that the Barton Springs Segment can be adequately simulated as a porous media 

system (Scanlon et al., 2003).   

For the purposes of water protection, a carbonate aquifer should be characterized 

using: (1) groundwater tracer tests; (2) mapping of the geological framework; and (3) 

estimating source area size using discharge magnitudes, water balances, potentiometric-

surface maps, aquifer tests, and other methods (Schindel et. al., 1996; Gunn, 2007).   

1.2. THE BARTON SPRINGS SEGMENT AND ITS DISCHARGE SITES  
The Barton Springs Segment extends from the City of Austin and the Colorado 

River southward to the cities of Buda, Kyle, and Mountain City near the Blanco River 

(Figures 1.1 and 1.2). A Saline-Water Zone or “Bad-Water Zone” is defined by 

groundwater with greater than 1,000 mg/l dissolved solids and bounds the Barton Springs 

Segment to the east, approximately along Interstate 35 and South Congress Avenue 

(Flores, 1990). 

The main discharge site for the Barton Springs Segment is Barton Springs, which 

discharges into Barton Creek in Zilker Park about 1 km from the Colorado River (Figure 

1.3). Barton Springs has four orifices: Main Barton, Eliza, Old Mill, and Upper Barton 

Springs. William Barton lived at Barton Springs in 1837 and originally named Main 

Barton, Eliza, and Old Mill Springs after his daughters Parthenia, Eliza, and Zenobia, 

respectively (Brune, 1981). Old Mill Springs was also called Walsh Springs after a mill 

was erected there by W. C. Walsh. Old Mill Springs is also known as Sunken Gardens 

springs because of its sunken walls that were built by the National Youth Administration 

from 1935 to 1937.  

The U.S. Geological Survey (USGS) reports flow from Barton Springs as the 

combined flow from Main Barton, Eliza, and Old Mill Springs. The mean flow of Barton 

Springs from 1917 to 1981 was calculated as 1.4 m3/s (50 ft3/s; Slade et al., 1986; Baker 

et al., 1986).  Average daily discharge is available for 1917 to 1918 and from 1978 to 

present. For other periods since 1898, flow measurement was infrequent. Simple time-

weighting of the infrequent flow measurements may not adequately capture the variation 

between measurements. Very severe historical droughts, such as those occurring in the 
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late 1910s and 1950s when measured Barton Springs flows declined as low as 0.34 and 

0.28 m3/s (12.1 and 9.7 ft3/s), respectively, are not repeated in the relatively short record 

of 1978 to present. In August 1996 and October 2000, the USGS reported a daily average 

flow of 0.48 and 0.45 m3/s (17 and 16 ft3/s), respectively, the lowest flow reported since 

the 1950s.  Monthly averaged flow values have been computed from 1917 to 2006 from 

graphical extrapolation of measured values that considers typical flow recession and 

precipitation events and magnitude (Slade, et al., 1986; Slade, 2008, personal 

communication). In this dissertation, “Barton Springs flow” refers to USGS-reported 

Barton Springs flow unless otherwise specified. 

The discharge of spring outlets associated with Barton Springs and lower Barton 

Creek varies.  Taylor and Schoch (1922) noted that “Barton Springs issue at many 

different points, and some of these points even change occasionally. One of the springs 

issues at the mouth of Barton Creek, in the middle of the bed.”  It is possible that Taylor 

and Schoch are describing a spring orifice that is now under Town Lake of the Colorado 

River. They observed that the Barton Springs orifices were sensitive to blocking by 

obstructions, and noted that Old Mill Spring had become covered with mud and ceased 

flowing for several years prior to 1922.  As a severe drought preceded 1922, it is possible 

that flow conditions influenced this drying of Old Mill Spring as well.  

The flows of the individual Barton Springs outlets vary depending on whether 

Barton Springs pool is full or drained (Slade et al., 1986).  The flow diversion suggests 

hydraulic connection between Old Mill, Eliza, and Upper Barton with the Main Barton 

Spring in Barton Springs pool.  After the transient storage in the pool and local aquifer 

associated with pool drawdowns have stabilized, the combined flows represent total 

flows, even though flows of specific outlets may have shifted. As springflow rates and 

groundwater levels increase, springs appear farther upstream but downstream of the Loop 

360 bridge.   

In this study, “low-flow conditions” refer to conditions when the combined flow 

of Main Barton, Eliza, and Old Mill outlets of Barton Springs are less than 1.1 m3/s (40 

ft3/s). Under low-flow conditions, the total dissolved solids of Barton Springs increases 

and discharge of overflow springs becomes very small or ceases.  Below a flow rate of 
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1.1 m3/s (40 ft3/s), Upper Barton Springs ceases to flow.  In the early 1920s, before the 

pool dam was built from 1929 to 1930, Old Mill Spring historically ceased flowing when 

combined Barton Springs flows were between 0.8 and 1.1 m3/s (30-40 ft3/s), although in 

1925 Old Mill Spring continued to flow even as combined Barton Springs flow declined 

below 0.44 m3/s (16 ft3/s).  Palmer (1986) and Schindel et al. (1986) suggest that in karst 

areas where spring clusters existed, some of the springs that dry during low-flow 

conditions that may be overflow springs. Overflow springs are created by excessive flow 

in a normal flow conduit, causing some flow to backup into a higher, normally dry 

conduit. Old Mill, Upper Barton Springs, and other small springs discharging upstream of 

Barton Springs pool and downstream of Loop 360 appear to serve as overflow springs. 

Differences between moderate- and high-flow conditions are less distinct than the 

shift to low-flow conditions. Moderate-flow conditions are defined as Barton Springs 

flows between 1.1 and 2 m3/s (40 and 70 ft3/s). High-flow conditions are defined to be 

above 2 m3/s (70 ft3/s).   

Within the aquifer, excessive recharge can also create a fourth flow condition: 

overflow conditions. This condition was observed during tracer tests in 2005 during 

which eastern aquifer flow routes were backed up and diverted flow to western flow 

routes and/or to San Marcos Springs. The overflow condition is described below in 

section 4.3 and may not coincide with any specific discharge rate of Barton Springs, 

although it appears to be limited to infrequent excessive recharge conditions.    

Cold Springs are a group of springs discharging from the south bank of the 

Colorado River about midway between the Loop 1 MoPac bridge and the upstream Red 

Bud Trail crossing of the Colorado River (Figure 1.4).  Some of these springs discharge 

at the current Town Lake water level, but additional discharge through Colorado River 

bottom sediments can be detected by temperature contrast. Total Cold Springs flow could 

be measured by traditional methods of flow measurement under drought conditions 

before Town Lake was constructed. Under most flow conditions the flow of Cold Springs 

is too small in comparison with much larger Colorado River flows to accurately resolve 

Cold Springs flows. Consequently, most flow measurements of Cold Springs were 

collected either during drought conditions before Town Lake was constructed or 



 8

constituted only the part of Cold Springs discharged above the Colorado River, and thus 

underestimate average flow.  

Hill (1892) described “several unnamed springs breaking out at the river level 

beneath Deep Eddy Bluff, west of the river.”  He described “almost due north of Barton 

Springs, beneath the highest bluff of the river at Deep Eddy, along other fracture lines, 

there is another group of fissure springs but, owing to the fact that they are at the base of 

a high bluff and accessible only by boat and at the low-level of the Colorado, few people 

have seen them.  They discharge at a large volume, but as they break out in the river’s 

edge it is impossible to gage them.”  Hill also mentions a “principal spring” as “Sand 

Springs,” that is located “between the dam and the city,” that appears to be Cold Springs  

which lies about halfway between the old dam site (near Tom Miller Dam) and Barton 

Creek.   The location described by Hill for Sand Springs does not precisely match that of 

Cold Springs because Cold Springs is nearly due west of Barton Springs, not due north, 

and is on the south bank of the Colorado River not the west bank. However, Hill’s map 

shows a fissure spring at the site of Cold Springs (Figure 1.4), and he maps no other 

spring between the dam and city other than Barton Springs.  According to Reddell and 

Russell (1961), many people reported a spring-fed cave under the bluff opposite Deep 

Eddy swimming pool that could be entered during low flow before Tom Miller dam was 

constructed, although no such cave reported below the lake level has been observed in 

recent times. Cold Springs is further examined in Chapter 4. Other minor springs 

identified include Powerhouse, Bee Creek, and Rollingwood Springs (Figure 1.4). 

Created by an upstream rock scarp, Deep Eddy was a popular swimming hole in 

the Colorado River that became a resort site in 1902. This rock scarp is now submerged 

beneath Town Lake (Figure 1.4). The current Deep Eddy pool is a manmade pool on the 

north bank of the Colorado River that is fed by wells constructed in alluvial deposits, and 

is downstream of Deep Eddy bluff.  

The fact that discharge from the Barton Springs Segment is limited to two general 

sites, Barton and Cold Springs, indicate a large degree of anisotropy and heterogeneity of 

groundwater flow within the aquifer system.  Abbott (1973) stated that the Edwards 

Aquifer discharged from a few large springs, which was evidence that a few “master 
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conduits” had pirated flows from other conduits.  Within a homogeneous aquifer, 

discharge would be expected to be distributed evenly at elevations below the water table 

along the 4 km of aquifer outcrop along the Colorado River and Barton Creek.  The 

focusing of discharge at two principal locations reflects the convergence of flowpaths 

within the aquifer.  

The volume of groundwater-saturated rock present in the Barton Springs Segment 

is about 2.1 x1010 m3 (Slade et al., 1986) to 2.6 x1010 m3 (Hauwert, 1997) during low-

flow conditions at Barton Springs flow of 0.5 to 0.7 m3/s. The volume of transient 

groundwater discharged during recession of Barton Springs flow of 0.3 to 3 m3/s is 3.8 x 

107 m3 (Slade et al., 1986). The total groundwater volume is about 3.7 x 108 m3 (Slade et 

al., 1986) during low-flow conditions based on an average specific yield of 0.17.  

Another source of discharge from the aquifer is pumpage. Permitted well 

pumpage currently is about 0.3 m3/s (10 ft3/s; Smith and Hunt, 2004). The majority of 

pumping volume is focused within the Buda area. The Hays County portion of the Barton 

Springs Segment relies solely on the Edwards Aquifer for water supply, although some 

water supply systems supplement with water from the City of Austin (the Colorado 

River), the underlying Trinity Aquifer, the Saline-Water Zone, and the Guadalupe River 

basin.  The City of Austin used water-supply service from the Colorado River to replace 

well pumpage for many portions of the Travis County over the Barton Springs Segment. 

In some areas of Travis County, the use of alternative sources may have been necessary 

as urbanization reduced the usable quality of the aquifer locally (Hauwert and Vickers, 

1994). Pumping wells are not uniformly distributed across the aquifer, in part because 

well yields vary spatially. 

1.3. SCOPE OF THIS STUDY 
This study investigates the heterogeneity and anisotropy of the karstic Barton 

Springs Segment in southern Travis and northern Hays counties, Texas, by field 

examination of its geological framework, recharge, and flow systems.  It summarizes 

investigations since the late 1800s for an overall understanding of the Barton Springs 

Segment. This dissertation first examines the geological framework, then examines 
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recharge and discharge processes, and finally characterizes groundwater flow. Chapter 2 

describes the characteristics of the hydrostratigraphic units and correlate solution cavities 

and springs observed with each unit.  Chapter 3 examines recharge through soils and 

sinkholes.  At a site scale, field measurements quantify the diffuse and discrete recharge 

through an upland sinkhole basin.  Chapter 4 recapitulates dye tracing, water-level data, 

geochemical studies, and aquifer testing to quantify the degree of anisotropy and 

heterogeneity in the aquifer.  

 



Figure 1.1. Study area: Barton Springs Segment of the Edwards Aquifer. The Barton 
Springs Segment is bounded to the north by the Colorado River, to the east by the 
Saline-Water Line that approximately follows IH 35 and Congress Avenue, to the west 
by the edge of Edwards outcrop area, and to the south between the Blanco River and 
Onion Creek.
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Figure 1.2. Balcones Fault Zone portion of the Edwards Aquifer.
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Figure 1.3. Barton Springs. Located in Zilker Park, Barton Springs consists of four 
known spring orifices, Main, Eliza, Old Mill, and Upper Barton Springs. Most of these 
springs are associated with fault exposures. The USGS reports Barton Springs flow 
from Main, Eliza, and Old Mill based on Barton Creek flow measurements above and 
below Barton Springs pool, in addition to measured Old Mill Spring tributary flow. A 
rating curve relation from well 58-42-903 is used to estimate Barton Springs flow 
between individual flow measurements of Barton Creek.
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Figure 1.4. Cold and other springs along the Colorado River.
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Chapter 2. Geological Framework  

This chapter describes the influence of the geological framework on anisotropy 

and heterogeneity of the Barton Springs Segment. The geological framework includes the 

depositional and solutional characteristics of hydrostratigraphic units, diagenesis, 

stratigraphic dip, and fractures. The geological framework is inferred from field mapping 

of hydrostratigraphic units on the surface, in caves, and in logged wells. 

2.1 INTRODUCTION  
The rocks of the Barton Springs Segment vary in composition, structure, and 

hydraulic properties both laterally (localization of conduits, fissures, and fractures) and 

vertically (differences between individual beds and members).  Geologic mapping of 

portions of the Barton Springs Segment were conducted by Hill and Vaughan (1898), 

DeCook (1963), the Bureau of Economic Geology (Rodda, et al., 1970 and unpublished 

quadrangle maps), Moon (1942), Strong (1957), McReynolds (1958), Smith (1978), Kolb 

(1981), Proctor et al. (1981), Young (1982), and the City of Austin (Snyder, 1985),.  

Previous mapping of portions of the study area by Young et al. (1975, 1977, 1982) 

distinguished formations of the Austin Group in greater detail than were incorporated for 

the recent Barton Springs Segment mapping.  South of the Colorado River, the Edwards 

Group was proposed to include informal rock units of similar hydraulic properties 

(hydrostratigraphic units) by Rose (1972).  These hydrostratigraphic rock units were 

refined and, through field mapping, correlated across the San Marcos Platform of the 

Balcones Fault Zone (Maclay and Small, 1984). Within the Barton Springs Segment, the 

Edwards Aquifer consists of the Edwards Group and overlying Georgetown Formation 

(Table 2.1). Mapping of the Barton Springs Segment using hydrostratigraphic units began 

in 1994 as a cooperative project of the US Geological Survey (USGS), the Barton 

Springs/Edwards Aquifer Conservation District (BS/EACD), and the Texas Water 

Development Board (TWDB, Small et al., 1996). The purpose of the mapping was to 

gather detailed data on the geological framework and to determine how the framework 

influenced groundwater recharge and flow. Hydrostratigraphic mapping assists in the 
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delineation of recharge areas by identifying the outcrop of the Edwards Aquifer. The 

mapped faults then can be compared to observable solution development in the vadose 

zone and traced groundwater pathways in the phreatic zone to examine the influence of 

geologic structure on groundwater flow.  

2.2 METHODOLOGY OF HYDROSTRATIGRAPHIC MAPPING 
The methodology for the cooperative mapping completed in 1996 is described 

briefly in Small et al. (1996).  The mapping of the Barton Springs Segment continues to 

be refined with improved methods and documentation (Hauwert et al., 1997b; Hauwert et 

al., 2003).  The outcropping rock units of the Barton Springs Segment of the Edwards 

Aquifer are mapped using hydrogeologic subdivisions modified from Maclay and Small 

(1984) and follow the stratigraphic nomenclature of Rose (1972) for the Kainer and 

Person Formations of the Edwards Group on the San Marcos platform (Table 2.1).  The 

carbonate-rock classification system of Dunham (1962) is used for the lithologic 

descriptions. The hydrostratigraphic members are best distinguished using sequences of 

beds, as in places individual beds may superficially resemble beds in other units. 

Measured sections are described in order to distinguish the units, to distinguish marker 

beds and patterns within the hydrostratigraphic units, and to note lateral variations.  

Unconsolidated materials, such as alluvial material, terrace deposits, fill materials, 

and spoil types were not mapped, but can exceed 7 m (20 ft) thickness, based on 

geotechnical borings and backhoe trenches.  These unconsolidated units can be important 

sources for small springs in the artesian area of the Barton Springs Segment and Saline-

Water Zone.  If shown on the same map, the unconsolidated units obscure the 

complicated underlying geological framework.  Additionally, the terrace and alluvial 

deposits require a different methodology, including borings, to map their thickness and 

extent. The alluvial and terrace deposits have been mapped previously (McReynolds, 

1958; Proctor et al., 1981), along with the springs discharging from them. 

 In 1994 and 1995, John Hanson, then of the USGS, and I conducted field 

mapping of the entire Barton Springs Segment.  Hanson initially focused his mapping 

efforts on refining the Kainer Formation of the Edwards Group by constructing measured 
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sections along portions of Barton Creek upstream of Mopac (Figure 2.1; Hanson, 1995; 

Appendix B).  Field verification and rock unit identification training was conducted by 

Ted Small on previously mapped outcrops in the San Antonio area.  Measured sections 

were created by John Hanson and me from rock exposures across the study area 

(Appendix B). From 1994 to 2002, Shu Liang, formerly of BS/EACD, developed and 

updated a Geographic Information System (GIS) from our field maps.  The geologic 

coverage has been periodically updated based on new field discoveries and refinements 

and was reported by BS/EACD in a wall map format in 1997 and 2003. I have continued 

to update this geodatabase since 2004. 

Since 1999, many rock outcrops with hydrostratigraphic units, marker beds, 

lithologic contacts, and faults were located within 1-m horizontal and vertical accuracy as 

control points using a Trimble XRS or Trimble XH Global Positioning System (GPS). 

The Trimble XRS postprocessed locations of a benchmark were compared to known 

coordinates and elevations to verify accuracy on numerous occasions. This geological 

control point documentation was critical for documenting the degree of field verification 

in specific areas. Valuable feedback was obtained from other geologists who examined 

portions of the study area.   

Well data, geotechnical borings, and trenches also were mapped as control points, 

within 1-m accuracy.  Geophysical logs from the TWDB, Texas Commission of 

Environmental Quality (TCEQ), and the Texas Railroad Commission (TRRC) were 

compiled as subsurface control points to verify surface mapping and create geologic cross 

sections (Hauwert et al. 2004a).  A number of wells were logged by the Edwards Aquifer 

Authority (EAA), GeoCam, and Collier Consulting at the request of BS/EACD. 

Faults were mapped in the field based upon the following criteria (Billings, 1947, 

p.155-171): (1) fault features such as slickensides, mullion structures, fault drag, fine-

grained gouge, mineralization, and breccia; (2) offset in strata or structures; and (3) 

abrupt changes in lithology.  Linear ridges, scarps and valleys; angular stream deflections 

or offset drainages; and sag ponds are commonly observed along faulted and fractures 

zones (Wesson et al., 1975; Woodruff, 1977).  Although physiographic criteria alone 

were not used to define faults, they were used to extrapolate faults between exposures.  
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Faults and fractures with minor offsets of less than 2 m (5 ft) are not always included on 

the mapping.  Fault orientation was measured using a Brunton compass or GPS line 

feature.  Because faults are poorly exposed in the study area, most faults were identified 

and mapped based on abrupt changes in surface lithology. Where abrupt changes in 

surface lithology could not be directly observed or precisely delineated, faults were 

inferred (dashed) to account for the discontinuity. Future re-examination might reveal 

that estimated cross faults are actually dipping fault blocks or relay ramp structures. 

Caves were entered to record subsurface hydrostratigraphic units on cave maps. 

While a few caves were mapped by me, most were mapped by volunteers of the Texas 

Speleological Survey (TSS). Once the hydrostratigraphic members were distinguished for 

Travis County caves, William Russell of TSS calculated the cave volume of each unit 

(Russell, 2007). I digitized the vertical profiles of a representative number of Travis 

County caves to illustrate their characteristics across hydrostratigraphic units. The 

original cave maps and my hydrostratigraphic unit interpretations are presented in 

Appendix C. The longest known Travis County caves were digitized from caves maps 

and their morphology was compared to recharge and aquifer characterizations derived by 

Palmer (1991). 

2.3 RESULTS 
The surface geology of the Barton Springs Segment is shown in Figure 2.2. 

Geologic cross sections across Barton, Slaughter and Bear Creeks are shown as Figures 

2.3, 2.4, and 2.5. 

2.3.1  DEFINITION OF SURFACE HYDROLOGIC AREAS 
From the hydrostratigraphic mapping shown, it is possible to delineate outcrop 

areas of the Edwards Aquifer where runoff can directly recharge the Barton Springs 

Segment (Edwards outcrop area), areas to the west of the Barton Springs Segment 

underlain by the upper member of the Glen Rose Formation (contributing area), areas 

within the Edwards outcrop area or on the eastern edge where overlying confining units 

drain toward the Edwards outcrop area (eastern drainage area), and exposure of overlying 

confining units that are not known to contribute to the Edwards Aquifer, but generate 
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runoff downstream of the Edwards outcrop area (artesian area, Figure 2.6). For practical 

purposes, exposures of overlying confining and underlying units entirely surrounded by 

areas of Edwards outcrop are considered Edwards outcrop areas.  Earlier mapping of the 

contributing, Edwards outcrop, eastern drainage, and artesian areas were conducted by 

Slagle et al. (1986) and formed the base of the original TCEQ official Recharge Map. 

The hydrologic areas used here are similar to those of Slagle et al. (1986), and are 

distinguished from the commonly used regulatory zones to avoid confusion.  

As shown on Figure 2.6, the combined Edwards outcrop and eastern drainage 

areas are 241 km2 (94 mi2) in surface area. Because of a lack of access or insufficient 

outcrop, a few areas mapped as potential recharge areas have not been sufficiently 

examined to establish if Edwards outcrop is indeed present.  The delineation of these 

areas generally agrees with but may not always correspond to the Contributing, Recharge, 

and Transition Zones adopted by the Texas Commission on Environmental Quality 

(TCEQ) official Edwards Rules maps.   

In addition, regulatory zones used by TCEQ (and municipalities such as the City 

of Buda (2005) that rely entirely on TCEQ zones) are not sufficiently flexible to adapt to 

new geologic map revisions.  In November 2002, the BS/EACD petitioned TCEQ for 

revision of the Recharge Zone definition based on the most recent mapping, and although 

some of its interpretations were eventually adopted in September 2005, some were not 

(Smith and Hunt, 2002).  Even though TCEQ defines all associated Edwards Aquifer 

units as being those above the Glen Rose Formation south of the Colorado River (as did 

Rose, 1972, and Small et al., 1996), TCEQ (2005) decided that exposures of the Basal 

Nodular Member serve as an aquiclude north of the Comal County line (TCEQ, 2005, see 

section 2.4 and glossary for “Recharge Zone”). Some small areas west of the City of 

Buda where the Georgetown Formation is observed at the surface and in shallow trenches 

were not included within the Recharge Zone in the official TCEQ Recharge Zone maps.  

Despite some differences, the hydrologic areas are the same as corresponding zones on 

state and municipal regulatory maps in most areas of the Barton Springs Segment.  The 

City of Austin relies on a site-by-site determination of the Recharge Zone boundaries for 
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regulation of proposed development within 457 m (1,500 ft) of the TCEQ Recharge Zone 

boundary (COA, 2006). 

The infiltration properties of a hydrostratigraphic unit can vary considerably 

across the Edwards outcrop area. In the bed of Onion Creek in Hays County, water can 

pond up to a meter or more deep for weeks over the Kirschberg Member, one of the most 

permeable unit of the Edwards Aquifer. About 70 m (200 ft) downstream of this “pond” 

is Crippled Crawfish Cave (see Figure 2.1 and Appendix G). This swallet has been 

measured to drain (whirlpool) at a rate of about 0.27 m3/s (13 ft3/s) into the subsurface on 

several occasions.  

The eastern drainage area consists of overlying units such as the Del Rio Clay and 

the Buda Limestone and contributes runoff to the Edwards outcrop area from the eastern 

edge. Most of the eastern drainage area has a relatively short drainage to the eastern side 

of the Edwards outcrop area. The Manchaca Flow Route flows along the eastern edge of 

the Edwards outcrop area and rapidly carries groundwater across the Barton Springs 

Segment (Chapter 4). For these reasons, the hydraulic connection of the eastern drainage 

area with the underlying Edwards Aquifer may be indistinguishable from the Edwards 

outcrop area (Smith and Hunt, 2002). Where the Del Rio Clay is thin and overlying the 

Georgetown Formation, soil-piping sinkholes are observed that could recharge the 

Edwards Aquifer. Observations of flow loss, gains, and caves in the overlying confining 

units are described in section 2.3.6. Some parts of the eastern Edwards outcrop and 

eastern drainage areas may frequently or invariably run off downstream of the Edwards 

outcrop area without significant recharge to the aquifer. Consequently, the hydraulic 

connections from the artesian area to the Edwards Aquifer require examination using 

excavations, flow measurements, groundwater tracing, and other tests to more precisely 

establish recharge potential.   

2.3.2  DEPOSITIONAL CHARACTERISTICS OF THE HYDROSTRATIGRAPHIC UNITS  
The Cretaceous depositional environment in the study area is summarized by 

Rose (1972) and Lundquist (2000). Relatively rapid rates of sea floor spreading and 

volcanic activity released carbon dioxide gases to the atmosphere and corresponded to an 
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increase in annual temperatures of 10 to 15º C relative to recent temperatures.  This 

caused relatively high sea levels during the Cretaceous (Savin, 1977; Berner et al., 1983). 

The rising water levels covered considerable land surface and decreased the albedo, 

increasing heat absorption and water vapor in the atmosphere (Barron et al., 1981; Barron 

et al., 1995). Relatively shallow marine waters covered the study area during much of the 

Cretaceous. 

The hydrostratigraphic units are grouped into overlying confining units, Edwards 

Aquifer, and underlying units (Table 2.1).  The overlying confining units include, in 

descending stratigraphic order, rocks of the Taylor Group, Austin Group (Austin Chalk), 

Eagle Ford Group (Eagle Ford Shale), Buda Formation (Buda Limestone), and Del Rio 

Formation (Del Rio Clay). The Edwards Aquifer incorporates the Georgetown Formation 

of the Washita Group, and the Person and Kainer Formations of the Edwards Group. The 

underlying units are rocks of the Trinity Group, in particular the Glen Rose Formation. 

2.3.2.1. Overlying Confining Units 
The Taylor Group consists of a dark calcareous clay.  Only the lower Sprinkle 

Formation of the Taylor Group is exposed over the Barton Springs Segment.  Surface 

erosion limits the Sprinkle Formation to a maximum thickness of about 120 m (400 ft) 

within the Barton Springs Segment (Young, 1977; Lundquist, 2000). 

The Upper Cretaceous Austin Group overlies the Eagle Ford Group and is a 

chalky, variably marly, fossiliferous limestone, and in places includes igneous deposits, 

with a thickness of about 119 m (360 ft; Lundquist, 2000). The lower Austin Chalk 

contains Inoceramus subquadratus , which was noted by Young and Marks (1952) to be 

restricted to the lower 30 m (100 ft) of the Austin Group in Williamson County.  The 

upper Austin Chalk contains a marine reptile, Mosasaurus maximus,  that was recovered 

from the base of the Austin Group along Onion Creek (Shumard, 1860; Texas Memorial 

Museum, 2008). The oysters, Inoceramus undulatoplic atus, Exogyra ponderosa,  and 

Phyrygia a ucella are present in the upper half of the Austin Group (Young, 1977; 

Lundquist, 2000).   
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Igneous deposits of the Austin Group may influence groundwater flow, as 

described in section 2.5, so particular attention was paid to mapping their outcrop. Most 

exposures of igneous deposits in the Barton Springs Segment weather easily and are 

poorly exposed except in creekbeds and excavations.  Igneous deposits include a volcanic 

plug at St. Edwards University, exposures along Ben White Boulevard construction, at 

Blunn Creek preserve, along railroad tracks north of St. Elmo Road, in the Williamson 

Creek bed east of Emerald Forest Drive, in a tributary of Slaughter Creek about 500 m 

south of Slaughter Lane and about midway between Manchaca Road and Brodie Lanes, 

and north of Bear Creek east of FM 1826 (Figure 2.7). Igneous deposits also were 

reported in excavations along Queenswood Drive within the neighborhood northwest of 

Slaughter Lane and Manchaca Road (Sansom, personal communication, 1997).   

Igneous deposits are described in greater detail by Moon (1942), Kolb (1981), 

Young (1982), and Caran et al. (2006). Hill and Vaughn (1898) observed that the igneous 

deposits were interbedded and extruded through the Austin Chalk and that “intrusive 

sheets and dikes of soft, much decomposed material of a basaltic nature occur within 10 

miles” (18 km) of the Cretaceous Pilot Knob volcano, located east of the Barton Springs 

Segment. Collingwood and Reggter (1926) found that the Cretaceous “serpentine” 

deposits were a complex series of volcanic breccias, tuff, sill, and dikes that followed 

pre-existing faults and were both intrusive and extrusive from place to place. It is 

possible that molten materials followed existing fractures, minor faults, and 

heterogeneities in the consolidated Cretaceous stratum and that the fractures were 

reactivated by Miocene tectonics (Strong, 1957; Woodruff, 1985).  

Young (1982) mapped igneous deposits in South Austin, where subdivision 

construction created fresh exposures, although Young’s maps exclude large adjacent 

faults. He found fragments of Austin Chalk within the igneous deposits that would 

normally be found higher in the stratigraphic section. Young also inferred that the 

igneous exposures were discontinuous. Based on these two observations, he reasoned that 

the nepheline-type igneous deposits in South Austin were explosion craters rather than 

linearly continuous dikes. In addition to the sites north of St. Elmo Rd and railroad tracks 

and Williamson Creek east of Emerald Forest Drive examined by Young (1982) and 
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Housch (2006), other fault-bounded nepheline-type deposits were observed in the 

Slaughter Creek tributary (Small et al., 1996). The line of nepheline-type exposures 

trended approximately between the St. Edward’s University paleovolcano and another 

basalt volcano south of Bear Creek mapped by Moon (1942) and Kolb (1981). I had 

difficulty reconciling the exposures mapped by Young (1982) with what I could see in 

outcrop, particularly as new exposures were discovered. The igneous deposits were 

interpreted in Small et al. (1996) and in the current map as a fault-bounded linear feature, 

similar to the dikes described by Hill and Vaughn (1898) and Collingwood and Reggter 

(1926), that is poorly exposed except at creek crossings and excavations that lie in a 

relatively straight line from the St. Edwards University paleovolcano to the basaltic 

paleovolcano north of Bear Creek. Alternately, it is possible, although unlikely, that 

Miocene faulting placed the discontinuous volcanoclastic deposits adjacent to lower-

lying limestones of the Austin Group as narrow downdropped grabens. 

The Eagle Ford Group underlies the Austin Group and is a calcareous, sandy 

shale, with a thickness of about 12 to 14 m (40 to 47 ft) in south Travis County and 

thinning southwest on the San Marcos arch (Adkins, 1932, p. 430; Lundquist, 2000).  The 

source of the Eagle Ford sediments is erosion of the paleo Ouachita Mountains to the 

northeast across the current Red River (Lundquist, 2000). The flaggy, sandy shale erodes 

easily and is poorly exposed except within a few creeks.  The Eagle Ford Group upward 

sequence includes the black, wavy, and “soapy” Pepper Shale; the light-colored and silty, 

iron-bearing Cloice Shale; the fissile shales and white crystalline biomicrite or biosparite 

limestones of the Bouldin Flags; and is superimposed by the gray calcareous South 

Bosque Shale (Lundquist, 2000).  The uppermost Eagle Ford Group contains phosphatic 

pebbles up to 8 cm (3 in) in diameter (Adkins, 1932, p. 431). Some of the rock fragments 

emit a petroliferous odor when fractured.  Fossil fish remains and ascending zones of 

Acanthoceras sp ., Eucalycoceras bentonianum , Neocardioceras, Romaniceras, 

Coilopoceras, Prionotropia, and Alectryonia lugubris also are found in the Eagle Ford 

Shale (Adkins, 1932, P. 435).  The contact of the Eagle Ford Group and underlying Buda 

Formation is separated by an unconformity in the Barton Springs Segment (Adkins, 1932, 

p. 431). 
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The Buda Limestone is a dense, variably nodular, sublithographic or 

“porcelaneous” (Sellards et al., 1933, p. 397), light gray mudstone, commonly containing 

orange calcispheres or pelloids and tiny calcite-filled fractures.  Its characteristic fossils 

include Budaiceras, ammonites, Exogyra clarki , Pecten roemeri , Codiopsis texana  

Whitney, and several species of Mantelliceras (Adkins, 1932, p. 399-400). The Buda 

Formation has a thickness of 11 to 18 m (35 to 50 ft) in the Barton Springs Segment. It 

thickens to the southwest across the San Marcos Platform (Lundquist, 2000).   

The Del Rio Clay is a 15 to 18 m (50 to 60 ft) thick, dark blue-green to yellow-

brown, variably gypsiferous clay commonly containing pecten-type fossil clams and an 

abundance of the fossil oyster Ilymatogyra arietina, formerly Exogyra arietina (Roemer, 

1949b). These fossil oysters are commonly referred to as “ram’s horns” or “devil’s 

toenail.” The upper Del Rio Clay contains Gryphaea mucronata  in Travis County 

(Adkins, 1932). The Del Rio may contain thick horizontal or vertical selenite seams and 

filled fissures, particularly in faulted areas.  A very hard, Ilymatogyra-laden bed can be 

observed near the base of the Del Rio Clay in south Travis and north Hays County. 

Adkins (1932, p. 390-394) observed a full section of Del Rio Clay near the mouth of 

Barton Creek at the Barton Springs Road crossing shortly after construction and believed 

it to be 24 to 30 m (80 to 100 ft) thick. This Barton Creek exposure is now weathered and 

poor; better exposure of the Del Rio Clay exists east of Barton Creek and north of Loop 

360 on City of Austin greenbelt parkland. Pyrite is common within the Del Rio Clay, 

suggesting its deposition under reducing conditions.   

2.3.2.2. Edwards Aquifer 
 The Edwards Aquifer consists of the Georgetown Formation of the Washita 

Group and the underlying Edwards Group that consists of the Person and Kainer 

Formations.   

The Georgetown Formation, which overlies the Edwards Group, was deposited on 

the eroded surface of the Person Formation in deeper water than was characteristic for 

most of the Edwards Group (Rose, 1972, p. 71). The Georgetown Formation is a marly, 

nodular packestone and grainstone limestone and contains the characteristic brachiopod 
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Waconella wacoensis , formerly Kingena wacoensis  (Roemer, 1849b).  The Georgetown 

Formation contains a number of other characteristic fossils, including Rastellum  

carinatum (Lamarck, 1806), formerly known as Ostrea (Alectryonia)  carinata , 

Texigryphaea washitaensis, various echinoids and ammonites, and various types of pectin 

including Neithea texan a. The University of Texas recovered the remains of a marine 

reptile Ichthyosaur from the contact of the Georgetown Limestone and Del Rio Clay at 

Marbridge along Bear Creek (Figure 2.1).  The thickness of the Georgetown increases 

from south to north across the Barton Springs Segment, ranging from 12 to 18 m (40 to 

60 ft) in the study area.  The contact of the Georgetown Formation and the underlying 

Person Formation is a reddish to orange oxidized, bored, and pitted horizon that is 

evidence of a disconformity where the underlying Edwards Group was lithified and 

exposed prior to Georgetown Formation deposition (Adkins, 1932; Abbott, 1977). 

The Edwards Group was previously named “the Barton Creek limestone” by Hill 

and Vaughan (1898) with its excellent exposure in its type locality along Barton Creek in 

South Austin (Adkins, 1932).  In general, the Edwards Group as a whole is distinguished 

from overling and underlying units by the presence of chert; massive, regular limestone 

bedding; rudists such as Caprinuloidea and Toucasia; and pulverulites (Adkins, 1932). 

Hill’s original measured sections are reproduced and reinterpreted in Appendix B.  

Within the study area, the thickness of the Edwards Group, consisting of the Person and 

Kainer formations, is about 140 m (450 ft) within the City of Buda area and diminishes to 

a thickness of about 105 m (350 ft) in the northwest corner near Red Bud Trail bridge 

(Figure 1.4) over the Colorado River.   

The Person Formation of the Edwards Group consists of the Marine, Leached, 

Collapsed, and Regional Dense Members of the Edwards Group. The overlying Cyclic 

Member of the Edwards Group may also be present, although it has not been identified in 

measured sections within the Barton Springs Segment and so is not considered here.  

The undivided Cyclic and Marine Members consist of a chert-bearing wackestone 

containing abundant Caprinuloidea (caprinid) fossils.  Erosion prior to Georgetown 

Formation deposition limits exposure of the Marine Member within the study area. In the 

Hays County portion of the study area, the Cyclic and Marine Members, if present, have 
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a maximum thickness of less than 21 m (70 ft).  On Bear Creek near the Hays and Travis 

county line, the Marine Member may only be about 1.5 m thick (5 ft), based on the 

presence of caprinid-bearing beds directly below the Georgetown Limestone (see 

Marbridge measured section in Appendix B). The lower portion of the Marine Member is 

difficult to distinguish from the upper part of the undifferentiated Leached and Collapsed 

Members because of their similar lithology and lack of measured section exposure in 

northern Hays County.   

The undivided Leached and Collapsed Members underlie the Marine Member in 

Hays County and the Georgetown Formation in Travis County. The combined thickness 

of the two members ranges from about 21 m (70 ft) near the Blanco River to less than 7 

m (25 ft) near the Colorado River.  These members consist of a light-colored, relatively 

clean wackestone, although burrowed mudstones, grainstones, and intervals of crystalline 

limestone also can be found.  In portions of south Travis County, the Leached and 

Collapsed Members may have a light pastel-pink tint, possibly from oxidation during 

Cretaceous exposure. Chert lenses also are common. A wide variety of fossils can be 

found in these members, particularly Toucasia, Chondrodonta, and miliolid foraminifera.  

The base of the Leached and Collapsed Members is particularly fossiliferous, containing 

packestones or grainstones of Toucasia, Chondrodonta, miliolid foraminifera, 

Caprinuloidea, and in at least one location Cladophyllia.  Remnant siliceous petrified 

wood was encountered overlying exposures of the Leached and Collapsed Members in 

portions of the Hays County, west of FM 2770 and south of FM 967 in the study area 

(Figure 2.1).  Cronin (1932) and Abbott (1977) noted the presence of petrified wood 

within the Person Formation of Comal and Hays Counties.  Young (1986) associated the 

petrified wood found by Cronin (1932) with Pleistocene terra rossa deposition rather than 

Cretaceous deposition. The hypothesis of fossilized Pleistocene plants fails to explain 

why these siliceous fossil remnants are strongly associated with exposures of specific 

beds in the Edwards Group and are not otherwise widely distributed. The hypothesis 

offered by Quinlan (1978, p. 66) that some terra rossa are remnants from extensive 

dissolution of certain soluble beds agrees overall with the correlation of terra rosa with 

those soluble beds. The collapsed zones common in the Leached and Collapsed Members 
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probably were caused by the fall of overlying limestone into the voids created by early 

dissolution of thin evaporate layers and lenses (Rose, 1972, p. 55). The lower 5 m (15 ft) 

of the undifferentiated Leached and Collapsed Members commonly contain a large 

collapsed zone (Rodda et al., 1970) that Rose (1972) distinguished as the Collapsed 

Member.  

The Regional Dense Member (RDM) is the lowermost member of the Person 

Formation.  It is a dense, argillaceous mudstone. The RDM has a characteristically light 

tan color, nodular surface weathering, fissile-bedding and wispy iron-oxide stains.  This 

member has a thickness of 4.5 to 10 m (15 to 32 ft) in the Barton Springs Segment, and 

thins toward the Colorado River.  Fossils are not abundant within the RDM, and many of 

the fossils common in other members of the Edwards Group, particularly miliolid 

foraminifera, are characteristically lacking within the RDM. The fossil Pleuromya 

knowltoni is unique to this member.  Ceratostreon texanum  has been observed: (1) in a 

resistant bed within the lower half of the RDM in Bowie High School Cave, (2) in Hays 

County southwest of FM 1626 and FM 967, and (3) by Abbott (1973) on a Colorado 

River bluff near Red Bud Trail. On downhole survey logs, the natural gamma increases 

significantly through the RDM, reflecting its greater clay content.  On aerial photographs, 

the RDM has a much lighter tone than adjacent unit exposures.  The depositional 

environment of the RDM was low energy (Rose, 1972), and as expected for flat-lying, 

low energy beds, the RDM is laterally extensive.  Small quarries mined for road base 

were commonly excavated in this member. An abandoned quarry exposing the top of the 

RDM in Zilker Park near the Colorado River contained the footprints of dinosaur 

theropods, plant fossils, and the shell of a Cretaceous turtle, Osteopygis (Texas Memorial 

Museum, 2008).  Polygonal mud cracks occur at or near the top of the RDM in exposures 

of Zilker Park and along Barton Creek.  The shallowing of the Cretaceous sea toward the 

end of RDM deposition may have been caused by a gentle rise of the San Marcos 

Platform (Rose, 1972). 

The Kainer Formation includes the Grainstone, Kirschberg, Dolomitic, and Basal 

Nodular Members.  The combined thickness of the Kainer Formation generally is about 
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100 m (300 ft) thick within the Barton Springs Segment, but may be less on some 

portions of the western edge of the study area. 

The Grainstone Member is the uppermost member of the Kainer Formation.  It is 

14 to 18 m (45 to 60 ft) thick and consists of a dense, tightly cemented, miliolid 

grainstone.  The Grainstone Member typically has a very light gray, almost white or light 

yellow color on fresh surfaces and contains intervals of mudstone to wackestone 

limestone. The Grainstone Member was deposited under high energy conditions (Rose, 

1972) and commonly shows cross-bedding. Within the study area, Chondrodonta, 

Caprinuloidea, and less commonly Toucasia are commonly found in the uppermost 

massive miliolid grainstone bed of the Grainstone Member.  Layered chert nodules, 

mudcracks, and pulverulite are present in the lower half of the member.  A distinctive 

Turitella packestone is commonly found near the base of the Grainstone Member.  

Eoradiolites also are found in the Grainstone Member. 

The Kirschberg Member is a 12 to 23 m (40 to 75 ft) thick evaporitic limestone 

consisting of crystalline rock and chalky pulverulite with chert nodules and lenses.  The 

name “Kirschberg” was derived from the original German name for “Cherry Mountain” 

near Fredericksburg, Texas in north Gillespie County, where gypsum and alabaster 

horizons are still present (Barnes, 1944).   Evaporite deposits are present within the 

Edwards Group outcrop in Maverick County, including an anhydrite seam; a 7 m- (20 ft-) 

thick rock salt deposit stratigraphically positioned near the top of the Edwards Group;  

and a gypsum or alabaster seam are reported (Adkins, 1932).  Gypsum seams are also 

reported in Menard County, Kinney County, and Gillespie County (Adkins, 1932). The 

Kirschberg Member probably was formed in highly saline, sabkha tidal flats (Rose, 

1972).  Finely laminated crusts or algal laminations, mudcracks, Cladophyllia coral, 

rudists such as Caprinuloidea, Toucasia, and chert layers are common in the Kirschberg 

Member. Eroded Kirschberg hills often contain terra rossa soils and reddish, siliceous, 

erosional remnants bearing Cladophyllia, Caprinuloidea, and Toucasia . Quartz 

megacrystals commonly fill voids inside rudist fossils of these siliceous remnants. The 

pulverulite layers are composed of euhedral dolomite crystals loosely cemented with 

calcite (Hill et al., 1898; Mahler, 1997; Lynch et al., 2004).  The Kirschberg Member is a 
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highly-recrystallized sparite such that original matrix and fossils are not commonly 

observed, except those fossils replaced by silica. 

The Dolomitic Member consists of resistant, highly-bedded wackestone. The 

upper half typically contains a poorly-sorted matrix that distinguishes it from the Leached 

and Collapsed Members, which it can superficially resemble. A tan-gray 1-m (three-ft) 

thick marker bed near the top of the Dolomitic Member contains Dictyoconus 

walnutensis.  Chert in the Dolomitic Member commonly appears as isolated nodules 

rather than the continuous bedded chert characteristic of the Kirschberg and Grainstone 

Members.  A miliolid grainstone, very similar to beds of the Grainstone Member, can be 

found below the Dictyoconus marker bed in some areas. A 1.2-m (4-ft) thick series of 

thin “rhythmic” beds that macroscopically resemble the RDM of the Person Formation is 

positioned near the middle of this unit.  Like the RDM, the rhythmic beds show an 

increase in natural gamma radiation on geophysical logs across the Barton Springs 

Segment.  The rhythmic beds also contain an uppermost mud-cracked interval, as 

observed in the City of Austin-owned Stoneledge (quarry) Water Quality Protection Land 

in Hays County (Figure 2.1).  Below the rhythmic beds, a massive Caprinuloidea bed can 

be found in upper Barton Creek.  The Dolomitic Member has a thickness of about 43 m 

(140 ft) in much of the Barton Springs Segment.  In Hays County, the lowermost bed of 

the Dolomitic Member is a distinctive, massive 2-m thick Toucasia wackestone that is 

honeycombed from selective weathering of its fossils.  

The Basal Nodular Member is the lowermost member of the Kainer Formation 

and Edwards Group within the Barton Springs Segment.  Its depositional environment 

was marked by a slight regional deepening of the inland sea following prior exposure of 

the lithified Glen Rose Formation tidal flat deposits (Ellis, 1985).  The Basal Nodular 

Member appears to be indistinguishable from the Walnut Formation, which is present 

north of the Colorado River where it consists of the Bull Creek and Bee Caves Members 

described by Moore (1961) and Rodda et al. (1970).  The Basal Nodular Member is 

highly fossiliferous and nodular, containing an upper Texigryphaea packestone 

intermediate miliolid grainstones and burrowed mudstone, and a lower Ceratostreon 

texanum packestone (Moore, 1961; Moore, 1964; Rodda et al., 1970; Small et al., 1996).  
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In some exposures, burrows are differentially dissolved to produce honeycombed texture 

and the matrix is highly recrystallized and oxidized such that the Basal Nodular Member 

superficially resembles the Kirschberg Member.  Natural gamma downhole logs show a 

distinct gamma increase within the Basal Nodular Member. The Basal Nodular Member 

is 14- to 20-m (45- to 65-ft) thick in the Barton Springs Segment (Small et al., 1996). 

2.3.2.3. Underlying Units 
The contact of the Basal Nodular Member and Glen Rose Formation is marked by 

a discolored hardground surface.  The upper Glen Rose Formation of the Trinity Group is 

exposed west of the Barton Springs Segment. It is strongly bedded with alternating marly 

and massive beds that weather into a stair-step topography (Stricklin et al., 1971). One of 

the uppermost beds of the Glen Rose Formation is a Caprinuloidea packestone.  Celestite 

nodules also are abundant near the top of the Glen Rose Formation (Hill and Vaughan, 

1898; Adkins, 1932). Gypsum outcrops were described by Adkins (1932) within the Glen 

Rose Formation near the mouth of Bull Creek north of the study area in northwestern 

Travis County. Large theropod footprints, possibly of Acrocanthosaurus, are found 

within the upper Glen Rose Formation west of FM 1826 in Hays County. Shallow water 

deposition of the Glen Rose Formation is consistently indicated by these dinosaur tracks, 

as well as ripple marks, plant fossils of Chara algae and cycads, gypsum seams, and its 

overall lithology (Adkins, 1932). Characteristic Glen Rose Formation fossils include 

Trigonia, Pecten, Alectryonia carinata , Orbitolina texana foraminifera, and various 

echinoids (Adkins, 1932). The Glen Rose Formation is up to 270 m (825 ft) in thickness 

(Stacy Park well in South Austin, Figure 2.1), but thins to 18 m (55 ft) near Kerrville 

(Adkins, 1932). 

2.3.3 DIAGENESIS AND MATRIX POROSITY  
The matrix is described as the “solid framework of a porous system” (Field, 

2002b). In this study, the matrix is considered to be the phreatic groundwater-bearing 

rock between fissures, conduits, caves, bedding plane partings.  Within the unsaturated 

zone, where specified, matrix may refer to portions of soil between macropores and rocks 

of the unsaturated vadose zone between fissures, conduits, caves, and bedding plane 
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partings.  In this subsection, the diagenesis of the rock matrix of the Barton Springs 

Segment is examined. Ellis (1985) described the diagenesis of the Edwards Aquifer as 

consisting of:  

i) Cretaceous diagenesis 

1) Deposition of marine and fresh-water calcic and magnesium calcite 

cements. 

2) Two types of dolomitization: 

• Fine-grained anhedral dolomite formation in a sabkha depositional 

environment 

• Silt-sized euhedral dolomite crystal formation in a schizohaline 

environment, where fresh water mixes with restricted saline waters. 

These are the pulverulitic layers. 

3) Replacement of some calcic shells and evaporates with silica. Chert 

nodules probably formed early after deposition, but after at least some of 

the dolomitization took place. 

4) Deposition of evaporates (such as halite and gypsum) in a sabkha 

environment. 

ii) Post-Miocene development of fresh-water aquifer system: 

5) Incongruent dissolution of magnesium, neomorphism of some micrite to 

microspar,  and an influx of clays that preferentially sorb magnesium. 

6) Dedolomitization by removal of magnesium-rich brines by fresh water 

with higher calcium to magnesium ratio. 

7) Deposition of spar cements filling some voids. 

Porosities typically of 25 to 35% but as high as 43% were measured in dolomites 

of the Edwards Group where incomplete dolomitization resulted in the fresh-water 

dissolution of undolomitized micrite (Ellis, 1985).  

An important element of diagenesis is the dissolution of the matrix framework by 

meteoric or mixing groundwaters undersaturated with respect to calcite. Within the 

Barton Springs Segment, prominent matrix dissolution processes include: 
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8) Dissolution of soluble evaporitic deposits, including halite and gypsum, 

resulting in large voids and collapse of overlying beds (Rodda, 1970; Rose, 

1972; Hovorka et al., 1993, p. 39-42). 

9) Dissolution of calcite cement in pulverulites. The loose euhedral dolomitic 

crystals are easily eroded by fast-flowing groundwater along focused 

groundwater flow paths (Mahler, 1997). The pulverulitic beds within the 

Kirschberg Member are visible in the walls of numerous caves and in 

downhole videos of wells. This process could be the most significant for the 

development of groundwater flow routes. 

10) Dissolution of rudists and burrows to create honeycombed porosity. In 

packestones and wackestones containing rudists such as Caprinuloidea, 

Toucasia, and Requienia, the fossils frequently are preferentially dissolved. 

This preferential dissolution results in a “honeycombed” texture of well-

connected voids. The preferential dissolution of burrows also creates 

honeycombed texture, particularly within the Basal Nodular Member of the 

Edwards Group. Although honeycombed texture commonly is associated with 

the Edwards Group, it also is common within beds of the upper Glen Rose 

Formation on the contributing area.  

11) Dissolution of limestone, particularly along fractures, by water undersaturated 

with respect to calcite.  

2.3.4  Influences of Igneous Deposits 
Igneous deposits can serve as barriers to groundwater flow (Hill and Vaughan, 

1898; Meinzer, 1923; Brune, 1981; Kuniansky et al., 2001) or provide mixing fluids and 

carbon dioxide that potentially can enhance limestone dissolution (Gary and Sharp, 

2006). Lava flows are likely to contain voids in the form of vesicles, lava tubes, and 

fractures from rapid cooling and shrinking (Meinzer, 1923, p. 104, 100-111) and tuffs can 

be very porous (Meinzer, 1923).  Smyth and Sharp (2006) summarize processes that 

increase the hydraulic conductivity of tuff including trapping of gases by subsequent 

flows, postdepositional mineralization such as devitrification, and fracturing. The 
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porosity of the igneous deposits in the Austin area is greatest in the brittle center where 

voids are most encountered, and least within soft, very fine-grained clay interbeds and 

edges (Collinwood and Reggter, 1926). Gary and Sharp (2006) hypothesize that 

volcanism enhanced karst development within the Cretaceous carbonates of Sistema 

Zacatón of northeast Mexico by elevating CO2 and H2S. It is not known whether these 

igneous processes influenced the aquifer development of the Barton Springs Segment. 

Igneous sills and dikes can create groundwater barriers (Meinzer, 1923, p. 190). 

However, within the Barton Springs Segment, there is little evidence that these igneous 

rocks are significant in terms of regional flow. This is consistent with Oetting (1995), 

who observed no geochemical evidence of igneous interaction with groundwater in the 

Barton Springs Segment.   

2.3.5 EFFECT OF STRATIGRAPHIC DIP  
The gradient created by stratigraphic dip strongly influences groundwater flow in 

limestone aquifers. Palmer (1986), White (1999b), and Ginsberg and Palmer (2002) noted 

that groundwater in vadose conduits flow generally along the down dip direction, with 

possible slight deviation from the influence of fractures, whereas phreatic conduits tend 

to be oriented perpendicular to dip.  Early geologists observed that the edges of the 

Balcones Fault Zone marked a deflection in dip east of the fault zone to relatively flat-

lying strata to the west.  Hill and Vaughan (1898) noted “south of the Colorado 

River…the rocks of the Edwards Plateau are more nearly horizontal than those of the Rio 

Grande plain; their average dip is less than ten feet to the mile, while in the plain the dip 

averages between 50 and 100 feet to the mile.”  Baker et al. (1986) reported an east-

southeast dip averaging 21 to 23 m (70 to 75 ft) per mile across the Barton Springs 

Segment. Distinction of actual bedding dip from offsets resulting from faulting and 

localized fault drag requires relatively detailed mapping that had not been conducted 

before the mid 1990s (Small et al., 1996). Consequently, earlier reports of eastward dip 

across the Barton Springs Segment likely combined fault displacements and stratigraphic 

dips. Eastward dipping beds are visible along Bear Creek for about 2 kilometers upstream 

of Marbridge (Figures 2.1 and 2.5). In some areas of the Barton Springs Segment, 
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northeastern dipping bedding planes were mapped in Figure 2.2 in association with 

scissor faults and ramps. The geologic map and cross sections reveal that although a few 

specific blocks do have dips to the east, northeast, or southeast, most of the bedding dip 

within fault blocks across the Barton Springs Segment is essentially flat. It is possible 

that regional eastward dips as slight as 3 m (10 ft) per mile are present but were not 

detected.  

Local groundwater within the Edwards outcrop area tends to flow southeast, east 

or northeast even though the stratigraphy is flat. In the study area, very few instances of 

southeastern dipping bedding planes are indicated by field mapping, although fault blocks 

are commonly downdropped in this direction. Consequently, it is actually the stair-

stepped fault blocks and not dip in the stratigraphic units that creates eastward or 

southeastward hydraulic gradients, as illustrated in Figures 2.3, 2.4, and 2.5.  

Downdropped fault blocks create great disparities in saturated thickness and 

transmissivity across the Barton Springs Segment. The saturated thickness diminishes to 

zero along the far western side of the outcrop area and increases to the maximum aquifer 

thickness of about 150 m (500 ft) in the artesian area (Baker et. al., 1986; Hauwert, 1997; 

Smith and Hunt, 2004). The saturated thickness diminishes during low-flow periods such 

that portions of the western side of the outcrop area become essentially dry (Slade et al., 

1986; Hauwert, 1997; Smith and Hunt, 2004). The decrease in transmissivity from the 

artesian area to the Edwards outcrop area can be directly attributed to decreasing 

saturated thickness from east to west across the Barton Springs Segment. 

2.3.6. FAULTS AND FRACTURES 
One of the most striking features of the surface hydrostratigraphic map is the high 

degree of faulting, which resembles a broken sheet of glass (Figure 2.2).  Faults in the 

Barton Springs Segment are part of the Balcones Fault Zone.  This fault zone developed 

above an ancient Ouachita mountain range and structural belt (Flawn et al., 1961; 

Woodruff and Foley, 1985).  Some faulting and fracturing probably has occurred 

following  consolidation of the Cretaceous sediments (Sellards and Baker, 1934; Bryan, 

1936; Maclay and Small, 1984), possibly associated with uplift on the San Marcos Arch 
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(Kastning, 1986). The most significant faulting occurred in the Miocene (Maclay and 

Small, 1984).  

The faults are normal faults and many formed en-echelon to the northeast to 

southwest trend of the Balcones Fault Zone.  Oblique en-echelon faulting typically forms 

as a result of uneven displacement or strike-slip faulting (Wilcox et al., 1973). However, 

strike-slip faulting is discounted for the Balcones Fault Zone because of the lack of 

evidence for horizontal movement (Strong, 1957). The lack of surface expression of 

strike-slip faulting is insufficient to eliminate its possibility since in other areas where 

deep-seated basement strike-slip faulting has occurred, such as the San Andreas fault in 

California and Bowling Green Fault Zone in northwest Ohio, the primary surface 

expression are en echelon normal faults rather than strike-slip faults (Wilcox et al, 1973; 

Hauwert, 1991). In the case of the Barton Springs Segment, post-depositional rise in the 

San Marcos Platform most likely created a series of ramp and scissor faults (Collins, 

1993, Collins 1995.) These faults vary in displacement along their extent. In some areas 

of the Barton Springs Segment, particularly where inferred cross faults are mapped, more 

detailed mapping is required to distinguish whether the abrupt changes observed in 

surface lithology are created by cross faulting or ramp structures. 

Fault offsets are highly variable across the Barton Springs Segment, even along 

the same fault. Faults with major offset in the Barton Springs Segment include the Mount 

Bonnell fault, which has a maximum displacement of 90 to 120 m (300 to 400 ft) in the 

northeastern corner of the Barton Springs Segment and in most places serves as the 

eastern edge of the Edwards outcrop area, and the Mustang Branch and Mountain City 

faults, each with a maximum displacement of about 30 m (100 ft, Figure 2.2).  The fault 

displacement rarely remains consistent across the Barton Springs Segment.  North of the 

Colorado River, the offset of the Mount Bonnell fault was measured as 200 m (670 ft, 

Damon, 1924) and its offset decreases to the south (Senger and Kreitler, 1984).  The 

Mount Bonnell Fault is known as the Tom Creek Fault in Hays County (DeCook, 1963). 

An offset in bedding exposed as a fault in some localities may be expressed as dipping 

strata or as a monocline in other areas.  In some instances, single faults separate into a 

number of smaller faults.  In many instances, the displacement may change along the 
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length of the fault as rotational faults, as described by Billings (1947) and Donath (1962). 

Cross sections west to east across the Barton Springs Segment show a net vertical offset 

of 326 m (1,070 ft) along Bear Creek and 384 m (1,260 ft) along Barton Creek that 

results almost entirely to fault offsets (Figures 2.3 and 2.5; Hauwert et al., 2004b). 

Fracturing and faulting play an important role in the karst maturity of the Barton 

Springs Segment.  In fractured limestone aquifers, a single fracture or small numbers of 

fractures can dominate the flow system (Paillet et al., 1987, Marrett, 1996; Marrett et al., 

1999; Halihan et al., 2000; Sharp et al., 2000). Halihan (2000) inferred that the 

permeability contributing to well yields of the Edwards Aquifer was influenced by 

fractures and not significantly by matrix or conduits. The rational for the importance of 

fractures relative to conduits is that conduits rarely intercept wells whereas fractures 

observed in typical outcrops can account for the highest permeability found in wells.  

Because faults are associated with crushed material, voids, and fractures, they represent 

planes of weakness along which groundwater flow is focused, facilitating the dissolution 

and erosion of the host carbonate rock into more integrated conduits frequently parallel to 

the general direction of faulting.  Faults initially can have open apertures from tensional 

stresses or poorly matching sides (Meinzer, 1923, p. 185; Lowe, 2000).   

The disparity of well and spring yields between the relatively unfractured and 

low-yielding Edwards Plateau Segment of the Edwards Aquifer and the highly productive 

Balcones Fault Zone portion indicate that faulting plays an important role on 

transmissivity (Abbott, 1977). Fractures aligned parallel to the predominant flow gradient 

are favored for aperture development (Mandel, 1966; Hushey et al., 1967; Kiraly, 2002). 

Conduit development is particularly favored in down-dropped graben blocks (Kuniansky 

et al., 2001). The fact that faults and fractures exist throughout an aquifer, yet the 

conduits are focused on selected faults and fractures, suggests that the fractures do not 

necessarily control the location of conduits (Huntoon, 1992).  Groundwater tracing 

indicates that across much of the Edwards outcrop area of the Barton Springs Segment, 

groundwater flow is influenced by gradients formed by down-dropped fault blocks and 

flows perpendicular to general northeast-fault trends (Hauwert et al., 2004a).  Studies in 

the San Antonio Segment comparing aquifer-test transmissivities to mapped faults have 
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not shown strong correlations (Hovorka et al., 1995, p. 107).  There are limits in 

assessing the importance of fractures versus conduits on groundwater flow based on 

observations from wells and outcrops in that: (1) the distinction between fractures, 

fissures, and conduits may be inconsistent in the literature, and (2) fracture apertures in 

outcrop are unrepresentatively large compared to those present within the deeper phreatic 

zone (Walsh et al., 1973; Mace and Hovorka, 2000; Klimchouk, 2004). 

The definition of apertures as fractures or conduits is inconsistent in the literature.  

Bear (1993) defines a fracture as “a part of the void space of a porous medium domain 

that has a special configuration: one of its dimensions, the aperture, is much smaller than 

the other two ones.” White (1999) used a 10-millimeter aperture size to distinguish 

between fractures and conduits.  Such definitions do not specify whether a fracture is a 

product of tectonics, solution enlargement, or both, and may inadvertently imply that 

fractures and conduits are distinguished by aperture size.  Many cave passages within the 

Barton Springs Segment occur along solution enlarged bedding planes or solution-

enlarged fissures and would be considered fractures under this definition.  A solution- 

enlarged fissure may be categorized as a fracture by some investigators and as a conduit 

by others. Halihan (2000) shows fracture apertures exceeding tens of centimeters in 

width. The largest fracture apertures measured in Zahm’s (1998) study of the Barton 

Springs Segment “exhibited significant solution enhancement.” According to Kulander et 

al. (1979), fractures are formed nearly instantaneously from stress failure. Extensional 

fractures are formed with maximum tensional stresses that are perpendicular to the 

fracture plane and maximum compressional stresses that are parallel to the fracture plane, 

and extensional displacement occurs perpendicular to the fracture plane, creating an 

aperture.  Change in the stress field or solution development can subsequently modify a 

fracture.  Kulander’s definition of fractures is used in this report because it distinguishes 

apertures created by tectonic and solutional causes. Portions of these tectonic features 

become enlarged through dissolution, stress release through overburden removal, erosion, 

and other later processes to become planar, solution-enlarged, or otherwise widened 

planar apertures called fissures (Meinzer, 1923).   
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Most fracture observed at the surface result from stress release and do not remain 

open far into the subsurface. Stress release causes fissure apertures parallel to the 

erosional surface and fracture frequencies to increase exponentially toward the surface 

(Meinzer, 1923, p. 114; Ford and Ewers, 1978, p. 1792; Chernyshev, 1983; Klimchouk, 

2000). Vertical fracture spacing in a glacial till in Sweden increased from 5 cm wide at 2 

m depth to 20 cm wide at 6 m depth (Hinsby et al., 1996). Hydraulic conductivity in 

gneissic and granitic rocks tested in Sweden correlates inversely to depth (Neretnieks, 

1993), reflecting overburden release or surface weathering.  Rock failure curves by 

Donath (1970) found brittle failure of the Crown Point limestone of Vermont to occur at 

4000 bars of differential stress at 1400 bars of confining pressure, but only 2000 bars of 

differential stress resulted in failure at about 400 bars of confining pressure.  In order to 

view fractures minimally affected by near-surface pressure release, Ford and Ewers 

(1978) recommended fracture mapping in deep caves. In addition to pressure-release 

fractures created by surface denudation, other fractures created by post-tectonic processes 

include those created by quarry blasting, removal of adjacent rock parallel to quarry or 

bluff walls, underlying voids (e,g. collapse caves), etc., although these late-origin but 

otherwise “pure” fractures are not considered significant to groundwater flow in the 

Barton Springs Segment.  Therefore, extensional fractures are not expected to be open at 

depths of 70 m depths where the water table and phreatic zone are generally present 

unless the fractures are solutionally enlarged into fissures or conduits. 

In order to examine the effects of extensional fractures without the effects of 

solution and pressure release, fracture apertures and connectivity in less soluble rocks of 

deep mines can be observed (Meinzer, 1923). Fractures in the granitic Stripa mine of 

Sweden were closed or mostly very tight with few open apertures at fracture intersections 

(Abelin, et al., 1985; Neretnieks, 1993). Even in crystalline rocks however, preferential 

pathways or “channeling” can be created by dissolution, erosion, variations in apertures 

width, and fracture intersections (Paillet, 1988; Tsang and Hale, 1988; Neretnieks, 1993). 

Fractured dolomites, alluvium, and sandstones can display solution features such as 

caves, sinkholes, sinking water bodies, and localized spring discharge (Meinzer, 1923, p. 

136; Huntoon, 1981; Hauwert, 1991; Worthington, 1999; Shade et al., 2001). Solution 
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and pressure release may account for borehole tracer breakthroughs that are different than 

those predicted by examining fracture apertures in crystalline rocks in Sweden (Moreno, 

et al., 1983).  The contrast between spring discharge, transmissivity, and cave 

development of the Edwards Aquifer in comparison to the equally faulted and fractured 

but less soluble overlying confining units, such as the Buda Limestone, Austin Chalk or 

Eagle Ford Shale, reflects the importance of fracture enlargement by solubility in the 

development of permeability within the study area (Brune and Duffin, 1983).   

In soluble fractured rocks, the effects of dissolution and fracturing are so inter-

related that it difficult to separate the significance of each factor individually in the 

development of preferential pathways. Extensional fracture features, such as hackles, 

plumes and other fracture features described by Hodgson (1961) and Kulander et al. 

(1979), can be used to distinguish fractures unmodified by solution. Fault planes 

unmodified by solution are distinguished by slickenlines on both faces and are expected 

to have large apertures following the removal of gouge, breccia, and mineral fill that are 

proportional to the amount of displacement. Solution features such as rills and scallops on 

fracture faces indicate solutional enhancement.  The solutional development of most 

apertures encountered within the study area lie along a spectrum of karst maturity and 

overburden release, from a fresh tight fracture to a pressure-release or solution-enlarged, 

planar fissure and eventually to a rounded conduit or sinkhole.   

Fracture traces are natural lines visible on aerial photographs and less than 1.6 km 

(1 mi) in length (Lattman, 1958). Lineaments are fracture traces greater than 1.6 km (1 

mi) in length. They are distinguished by linear alignments of features such as topography, 

vegetation type and density, soil tone, stream segments, bedrock scarps and prominent 

bedrock fractures. Like fractures, fracture traces and lineaments are thought to be 

influenced by geologic structure, lithology, and rock solubility (Trainer, 1967). Fracture 

traces and lineaments may be related to fractures (Lattman and Nickelsen, 1958; Lattman 

and Matzke, 1961; Hough, 1960; Krothe and Bergeron, 1981), although the terms are not 

interchangeable. Lineaments were mapped across the Barton Springs Segment in De La 

Garza and Slade (1986).  Fracture traces serve in early mapping to delineate possible 

faults, and as discontinuities extending to the water table level to reflect possible 
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influences on groundwater flow.  Fracture trace and lineament densities and shifts in their 

prominent orientation have been used to delineate the extent of major fault zones, even 

when covered with more than 35 m of loosely consolidated overburden (Hauwert, 1991). 

Fracture skins increase the heterogeneity of the rock because of differences in 

porosity, diffusivity, permeability, and sorption, and because of their large surface area 

relative to the total rock volume (Robinson et al., 1998).  Sorption on the fracture skin 

can reduce concentrations of soluble constituents. Mineral deposition, clay filling, and 

organic growths on a fracture skin can inhibit flow and transport from the aperture into 

the rock matrix (Moench, 1984; Fu et al., 1993; Sharp, 1993; Sharp et al., 1995; 

Zimmerman et al., 2002).  

2.3.7. SOLUTIONAL CHARACTERISTICS OF THE HYDROSTRATIGRAPHIC UNITS 
Solution cavities also develop preferentially along more soluble or softer bedding 

planes as a result of chemically undersaturated or rapidly moving groundwater flow.  

Through the processes of dissolution, erosion, and/or collapse, specific water pathways 

tend to become larger and better integrated over time. The presence and form of caves 

reflects properties of the hydrostratigraphic units they develop within.   

The hydraulic properties of individual hydrostratigraphic units are examined 

using a variety of techniques. Some studies have examined variations in hydraulic 

properties of individual stratigraphic units using packers in a few pumping wells of the 

Barton Springs Segment (Flores, 1990). In general, well bores are very small in relation 

to the scale of the aquifer-wide heterogeneities, such as solution-enlarged conduits, 

expected in karst areas (White, 1988).  On a larger scale, the solutional properties of the 

hydrostratigraphic units can be examined in outcrops and caves. Caves within the Barton 

Springs Segment can extend vertically across hydrostratigraphic units and allow a larger 

area of observation for a feature than a well bore.   

Cave morphology typically expresses the permeability of the rock unit. Vertical 

shafts typically develop in association with fractures penetrating relatively low 

permeability units: horizontal passages develop in relatively high permeable units (White, 

1988).  Palmer (1991; 2003) describes the significance of lateral cave passage 
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morphology worldwide (Figure 2.8). Cave morphology reflects the aquifer pre-solutional 

porosity as a function of recharge type: discrete, diffuse, or hypogenic (Palmer, 1991).  

Discrete flow is reflected by branchwork patterns resembling those of dendritic streams 

in morphology and are formed as a result of discrete recharge and discrete, converging 

groundwater flow. Branchwork cave patterns by far represent the most common 

morphology worldwide (Palmer, 1991).  Where fractures have a predominant influence 

on groundwater flow, cave passages tend to have an angular network pattern, although 

this cave morphology is observed in only 10% of known caves and typically only where 

overlying confining rocks inhibit surface karst topography (Palmer, 1975).  Maze 

passages reflect conditions where flow is evenly distributed, such as seepage through 

insoluble but permeable beds, mixing zones, and flooding of conduit systems or other 

sustained high gradients, such as around dams. Anastomotic maze passages predominate 

under phreatic conditions where the hydraulic gradient and bedding dip are relatively flat 

(Palmer, 1991) or where hypogenic flow seeps evenly across lower underlying and 

originally less-permeable beds (Klimchouk, 2000b).  Diffuse infiltration through porous, 

soluble rock or diffuse flow through a rock matrix with high intergranular porosity results 

in spongework morphology, although this pattern also can be created along mixing zones.  

In some cases, probably restricted to mixing zones, diffuse flow through permeable but 

insoluble rock matrix can create network maze type caves (Palmer, 1991). Calcite-

undersaturated recharge water infiltrating rocks with high interparticle porosity become 

calcite-saturated within a few meters of the surface and consequently rarely form caves 

except along mixing zones (Palmer, 1991). 

Physical and analog models have been created using electrical analogs, sand flow 

analogs, and plaster of paris dissolutional simulations to examine cave development 

(Ewers, 1982).  The simulated caves resemble dendritic systems that grew from the 

simulated discharge point out to the recharge areas.  The cave growth was not gradual, 

but showed rapid increases at points where the developing conduit connected with a pre-

existing conduit.   

The hydrogeologic characteristics of the Barton Springs Segment are expressed in 

the patterns of its cave passages. The caves of the Barton Springs Segment follow a 
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branchwork pattern, where smaller tributaries and conduits join larger conduits (Figure 

2.9). This cave pattern reflects the dominance of discrete recharge and advective 

groundwater flow overall (Palmer, 1991; Palmer, 2003).  One example of maze 

morphology is found in Bandit Cave, which lies in the Cold Springs groundwater basin, 

about 0.5 km south of the Colorado River. The most obvious reason for the maze 

morphology of Bandit Cave is historic flooding along the entrenched paleo-Colorado 

River with temporary storage in the adjacent aquifer. No examples of spongework have 

been documented in caves within the Barton Springs Segment. 

All of the hydrostratigraphic units of the Edwards Aquifer are relatively 

permeable and none are true aquitards (Rose, 1972; Maclay and Small, 1984). However, 

the hydrogeologic properties of each unit vary such that each has characteristic solutional 

properties. In this dissertation, the solutional properties of the hydrostratigraphic units are 

presumed in part on the presence or absence of known enterable passages and springs.  

Cave sites are named in this report for reference, although their locations are for the most 

part intentionally not mapped here in order to preserve the safety of untrained curiosity-

seekers, the caves themselves, and their fauna (BCCP Karst Subcommittee, 2007).  

In general, members containing permeable beds, such as (in decreasing tendency) 

the Kirschberg, Marine/Leached/Collapsed, and Dolomitic Members, typically have 

horizontal caves associated with them. These are located immediately above and below 

less-permeable members and beds (e.g., the Georgetown Formation, the RDM, and 

rhythmic beds of the Dolomitic Member). Less soluble, more competent units, such as 

the Grainstone Member, retain openings from collapse. Internal collapse of large blocks 

is commonly observed in thick, soluble units of the Kirschberg and Collapsed Members. 

Vertical pits are formed by a cave passage breaching through the less-soluble units such 

as the Georgetown Formation, the RDM, the Grainstone, and Basal Nodular Members, as 

predicted by White (1988). 

The overlying Taylor Group, Austin Group, Eagle Ford Shale, Buda Limestone, 

and Del Rio Clay are generalized as “overlying confining units” in this study, although 

their aquitard properties have not been critically examined and may not be as uniform as 

commonly assumed.  Hill and Vaughan (1898) accepted that springs discharging along 
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the east side of the Edwards Aquifer originated as artesian flow from the underlying 

Edwards Aquifer. In Uvalde County, Leona River Springs discharges from the San 

Antonio Segment under artesian pressure through the Austin Group (Garza, 1962).  

Along the eastern edge of the Barton Springs Segment, potentiometric-surface elevations 

of the Edwards Aquifer approach or exceed the elevation of some of these springs 

discharging from overlying confining units even during drought conditions (Hauwert, 

1997). These springs commonly discharge from surface terrace, alluvial deposits, or 

conduits in the Buda Limestone and Austin Chalk. During a 2001 aquifer test for the 

Buda Water Supply System, a well completed in the Austin Chalk declined in response to 

pumping of the Edwards Aquifer test well (Mikels, 2001).  Because the artesian area 

springs discharge from the overlying confining units at relatively low rates (less than 6 

l/s) and have as much as 50 m or more of less permeable clays, shales, chalk, and 

limestone, it is commonly assumed that most of these springs are derived from local 

sources and that the Barton Springs Segment is hydraulically separate from the overlying 

confining units. 

Only a few minor caves and sinkholes are documented in the Austin Chalk and 

Buda Limestone, although extensive caves in the Austin Chalk (such as Robber Baron’s 

Cave in San Antonio) and Buda Limestone (such as Academy Cave under Texas State 

University in San Marcos) occur farther south. Shade and Krejca (2007) observed a few 

creek swallets and one cave that developed within the Austin Chalk across Hays County, 

and that six caves (including Academy Cave) developed within the Buda Formation. 

Springs commonly drain from the Buda Limestone in the Austin area, especially its basal 

section directly above the Del Rio Clay contact. I observed a partially water-filled 0.7 m 

diameter cave conduit within the Buda Formation by descending 20 feet into a hand-dug 

well prior to its plugging just south of Slaughter Creek and west of Manchaca Road. 

COA staff have reported observing unquantified flows of Williamson Creek completely 

cease along a fault between the Austin Chalk and Buda Limestone, a short distance 

downstream of Manchaca Road and 4 km downstream of the Edwards outcrop area.   

The Del Rio Clay is a low-permeability overlying confining layer over the 

Edwards Aquifer, although localized breaching by macropores could occur.  Selenite 
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seams, commonly observed in the Del Rio Clay in faulted areas, that suggest mixing of 

calcium-bearing waters with sulfur derived from pyrite. Hill (1901) suggested that the 

calcium originated from shells of Illymatogyra arien tina but did not rule out possible 

fracture-focused flow from the overlying Buda Formation.  Active water-producing 

fissures in the Del Rio Clay are rare but have been reported by construction workers at 

the intersection of Ben White Boulevard and Highway 290 (Hauwert and Vickers, 1994; 

Figure 2.1).  On December 12, 2002, I measured between 0.06 to 1.6 m3/s (2.1 to 5.6 

ft3/s) of flow loss on Slaughter Creek across “Elm Waterhole” which is underlain by Del 

Rio Clay downstream of the Edwards outcrop area (Figure 2.1).  Soil-piping features are 

commonly observed on Del Rio Clay exposures overlying the Georgetown Formation.  

Dye tracing of these soil piping features have not yet been conducted to establish whether 

or not hydraulic connections with the Edwards Aquifer are present. Overall, the 

solutional development and the degree of cross-formational flow of the overlying 

confining units have not been sufficiently examined to assess, if any, that occurs. 

The Georgetown Formation has relatively low permeability in many areas (Land 

and Dorsey, 1988; Small et al., 1996). However, localized solution development creates 

hydraulic connection with the underlying Edwards Group. The Georgetown Formation 

also contains the entrance shaft to Antioch Cave, the most significant recharge swallet 

documented within the Barton Springs Segment. Antioch Cave is developed along a 

fracture in Onion Creek, and can recharge as much as 2.5 m3/s (90 ft3/s) through 6 m (20 

ft) of the Georgetown Formation into the underlying Edwards Group (Hauwert and 

Rauschuber, 1994; Fieseler, 1998; Smith et al., 2001). Another 0.7-m wide fissure at the 

top of the Georgetown section southwest of the intersection of FM 1626 and FM 967 

appears to completely drain a tributary of Onion Creek under most runoff conditions. 

These examples demonstrate the difficulty of applying randomly located aquifer testing 

to karst when the predominant flow is localized along specific conduits. There are no 

known horizontally-extensive caves mapped within the Georgetown Formation of the 

Barton Springs Segment. However, swallets like Antioch Cave that developed within the 

Georgetown Formation are extremely important for recharge to the Barton Springs 

Segment. 
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The Marine, Leached and Collapsed Members as a group are second to the 

Kirschberg Member in susceptibility for solutional development (Small et al., 1996). 

Large sinkhole basins develop within these units. Numerous caves with extensive 

horizontal passages have formed in these permeable Person Formation units, including 

Antioch Cave, Airman’s Cave, and Barton Skyway Cave (Appendix C; Russell, 2007).  

Shafts extend 7 to 10 m through the Leached and Collapsed Members in Sunset Valley 

Cave and Driskill Cave and continue through smaller conduits into the RDM. Hill and 

Vaughan (1898) stated that the uppermost water-bearing strata in the Austin area is about 

15 m (50 ft) below the top of the Edwards Group, which is likely in the lower portion of 

the Leached and Collapsed Members.  

Of the caves that originate within the RDM or penetrate into the RDM, very few 

show any indication of horizontal development within this unit. Oetting (1995) reports 

geochemical differences above and below the RDM in some wells along the Saline-Water 

Line of Bexar County, but not in wells of Comal and Bexar Counties. He inferred that the 

RDM serves as a local, limited aquitard. The permeability contrast between the RDM and 

the more permeable overlying Leached and Collapsed Members is demonstrated by the 

development of the 2-mile long Airman’s Cave above the RDM (Hauwert and Russell, 

1996.) That hydraulic breaches exist through the RDM beneath Airman’s Cave is shown 

by the roughly 0.23 m3/s (1 ft3/s) of water that discharged from the cave entrance under 

high-water table conditions in 1992.  This high-water table flow most likely rose via 

conduits penetrating through the RDM.  Many caves (such as Maple Run, Sunset Valley 

Cave, Driskill Cave, Sendero Sink, and the Breached Birth passage in Blowing Sink) 

extend into or through the RDM, and nearly always undergo a reduction in passage size 

in that section.  In most cases, passages draining from the Leached and Collapsed 

Members are too small for human exploration where the passage descends into the RDM. 

In a few cases, extensive collapse within the underlying Grainstone and Kirschberg 

Members has resulted in impartial or complete collapse through the RDM. Abbott (1984) 

presented observations from a quarry in the San Antonio Segment where vertical conduits 

are well developed through the RDM. In 2006, small flows were followed along nearly 

every tributary to Barton Creek downstream of Loop 360. No losses were detected in 
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tributary stretches underlain by RDM. From these observations, it is inferred that within 

the Barton Springs Segment the RDM locally perches vadose flows, although vertical 

conduits can allow hydraulic connection between the Person and Kainer Formations. 

The Grainstone Member beds tend to be massive and resistant in outcrops. These 

control creek levels and cave ceilings.  Solution runnels observed along Barton Creek at 

Campbell’s Hole and at Twin Falls are naturally sculpted within the Grainstone Member 

(Figure 2.1). The tightly-packed miliolid fossils make the Grainstone Member more 

massive and competent and less soluble and erodable than the underlying Kirschberg 

Member. The contrasts in characteristics between the Grainstone and Kirschberg 

Members create conditions that develop more open caves than are found in any other 

stratigraphic interval of the Edwards Aquifer. The Kirschberg Member has collapsed in 

many locations from loss of soluble materials, but the Grainstone creates a relatively 

competent “roof” that keeps the dissolved and collapsed interval at the top of the 

Kirschberg Member open.  Collapsed-entrance caves are common in the Grainstone 

Member near the contact with the Kirschberg Member, although lateral caves extend 

along the immediately underlying pulverulite bed (such as Whirlpool (Appendix C), Get 

Down and Djerido Caves (Appendix C). Many more caves extend through the Grainstone 

than through the superimposed RDM. Most cave passages through the Grainstone are 

tight and circular descending, resembling a corkscrew. 

Most of the known cave development in the study area occurs within the 

Kirschberg Member.  The largest sinkholes and many broad, shallow karst depressions 

have formed within the Kirschberg Member. Overall, the Kirschberg Member is the most 

permeable unit within the Barton Springs Segment and commonly shows cave 

development focused along pulverulitic beds that are composed of euhedral dolomite 

grains weakly cemented with calcite. A 1-m (3-ft) thick pulverulitic bed at the top of the 

Kirschberg Member is be the most significant bed within the Edwards Aquifer for cave 

development. The Kirschberg Member also is highly permeable and collapsed as a result 

of ancient leaching of evaporitic materials by groundwater (Rodda, et al., 1970; Rose, 

1972). Hill and Vaughan (1898) probably were referring to the pulverulitic beds when 

describing water-bearing “arenaceous beds … composed of very fine particles of sand 
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embedded in a white or limy matrix.” The instability of the breakdown materials within 

the Kirschberg Member limits direct observation in numerous caves, including Djerido 

(Appendix C), Bliss Spillar, Equinox, and Dunvegan Caves. Where the Kirschberg is 

exposed on the surface, abrupt changes in dip commonly reflect the collapse of 

underlying beds.  Because of the high strata-influenced permeability of this member, 

caves developed within the Kirschberg Member in the Edwards outcrop area typically do 

not show particular influence from faulting and fracturing, but instead trend parallel to 

local dip or down-dropped fault blocks (e.g., Flint Ridge Cave; Figure 2.9). In the 

artesian area or closer to discharge springs, groundwater flow through the Kirschberg 

Member becomes more focused along faults, fractures, and regional gradients.  Along the 

portions of the Sunset Valley Groundwater Flow Route, the groundwater flow is 

localized through the Kirschberg Member along the trend of the Barton Springs Fault 

(See Chapter 4).  It is also likely that groundwater flow is localized through the 

Kirschberg Member along the Manchaca Flow Route, which follows major fault trends to 

Barton Springs. 

Caves developed within the Dolomitic Member are strongly influenced by faults 

and fractures. Cave passages such as the lower portions of Flint Ridge Cave and Blowing 

Sink trend northeastward along prominent fractures. Strong stratigraphic control is 

observed in caves above the rhythmic beds, such as Bee Creek Cave.  Perched water is 

commonly observed in wells, caves (Cave X, Flint Ridge, upper level flow in Midnight 

Cave), and springs (Bee Creek Springs, Backdoor Springs) in the upper Dolomitic 

Member, particularly immediately above the rhythmic beds.  Some caves penetrate 

vertically through the less-permeable rhythmic beds (e.g., Midnight Cave).     

Although the Basal Nodular Member has a relatively lower permeability than its 

overlying units, the hypothesis (Rodda et. al., 1970; Brune, 1981; Texas Commission on 

Environmental Quality, 2005) that the Basal Nodular Member forms an impermeable 

base below the Edwards Aquifer is not supported with field observations in the Barton 

Springs Segment. Examination demonstrates that the Basal Nodular has high localized 

permeability and this unit has been included within the Edwards Aquifer as the Basal 

Nodular Member (Rose, 1972; Maclay and Small, 1984; Small et al., 1996) as far north 
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as the Colorado River. Many caves found in the lowermost portion of the Dolomitic 

Member (e.g., Walton/Walsh Well, El Sotanito, and Toucasia Cave) typically are 

expressed as vertical pits draining into the Basal Nodular Member but becoming 

impassable within about five m (15 ft).  The total mapped cave volume for the Basal 

Nodular Member is relatively low because its type of cave development is limited to tight 

vertical pits or fissures entering from the overlying Dolomitic Member (Russell, 2007). 

Because dissolution can be focused along tight fissures and bedding-plane conduits, the 

lack of cave volume does not necessarily show the Basal Nodular Member is 

impermeable.  

Horizontal cave development overlying the Basal Nodular Member suggests some 

permeability contrast is present with the overlying Dolomitic Member, similar to the way 

Airman’s Cave perches within the Leached Collapsed Member over the Regional Dense 

Member.  One of the longest caves within the Barton Springs Segment, Ireland’s Cave, 

has a massive Toucasia packestone at its entrance, similar to the bed perching over the 

lowermost Dolomitic Member overlying the Basal Nodular Member, although its 

stratigraphic relation has not been critically examined because of heavy debris filling of 

the entrance, high carbon dioxide gas levels, and other access problems.  

A surprising find is that perched springs on the western side of the Barton Springs 

Segment discharge from within the Basal Nodular Member itself. In fact, the more 

abundant vegetation associated with the Basal Nodular member outcrop distinguishes it 

on aerial photographs (Kolb, 1981). The Buttercup Creek area of the Northern Segment 

(Figure 1.2) contains a surprising high density of caves localized within the Walnut 

Formation (Russell, 1993). Groundwater tracing in the Buttercup Creek area reveals that 

shallow groundwater flow is constrained to cave streams within the Walnut Formation 

that discharge from a major spring developed in the uppermost beds of the Glen Rose 

Formation: a clear example of cross-formational flow (Hauwert and Warton, 1997). The 

extensive cave development in Natural Bridge Caverns of the San Antonio Segment 

occurs solely within the Basal Nodular Member and uppermost Glen Rose Formation 

(Abbott, 1973; Kastning, 1986).  Kastning (1986) mapped the cave development west of 

New Braunfels as being much greater within the Basal Nodular Member and upper Glen 
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Rose Formation than in superimposed members of the Edwards Group. He attributed this 

to late Cretaceous uplift of the San Marcos Arch that produced stratigraphic dip parallel 

to prominent fracture trends where dissolution focused.  The San Marcos Arch may also 

create a barrier responsible for the groundwater divide between the Barton Springs and 

San Antonio Segments of the Edwards Aquifer (Klempt et al., 1979). 

Solution cavity and cave development within the Basal Nodular Member is 

strongly associated with fractures and preferential dissolution of burrows creating some 

honeycomb cavities. Cuttings from wells (Stoneledge WQPL, well 58-50-1C1, see Figure 

2.1) drilled into the Basal Nodular Member and some outcrops often show a 

characteristic dark discoloration that may imply local lack of oxygenated groundwater 

flow.  The dichotomy of solution development within the Basal Nodular Member can be 

explained by relatively late cave development within the Basal Nodular Member because 

groundwater perched above the Basal Nodular Member requires sufficient stream 

incision to promote sufficient hydraulic gradient for dissolution (Hauwert and Warton, 

1997). If the Basal Nodular Member matrix has low permeability, then dissolution can 

focused in relatively small fractured areas with steep hydraulic gradient allowing small 

conduits to form relatively quickly. Within the artesian area and eastern edge of the 

Edwards outcrop area where the Edwards Aquifer is relatively thick and local creek base 

levels are above the elevation of the Basal Nodular Member, rock dissolution and 

groundwater flow occur more easily within the Dolomitic Member above the Basal 

Nodular than downward through the Basal Nodular and upper Glen Rose Formation.  

Hauwert (1997) excluded the Basal Nodular Member for the purposes of calculating the 

volume of groundwater present in the Edwards Aquifer. Hypogenic conceptual models of 

karst maturation proposed by Klimchouk (2004) suggests that vertical conduits 

eventually develop and transmit flow through the Basal Nodular Member between the 

Trinity and Edwards Aquifers as a result of chemical and or thermal gradients. A more 

detailed characterization of the Basal Nodular Member is warranted. 

Geologic structure and its influence on conduit development can be observed in 

the subsurface. The trend of Airman’s Cave is strongly related to a series of subparallel 

faults (Appendix C; Hauwert and Russell, 1996).  Flint Ridge Cave trends southeastward 
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or perpendicular to fault trends within the Kirschberg Member section, but deflects 90 

degrees to follow ceiling fractures within the Dolomitic Member sections.  Small-scale 

structures, including localized folding and solution-collapse karst features, frequently are 

observable in the subsurface. Fault drag and collapse above solution-enlarged cavities 

creates localized folding.  Localized folding and collapse features typically are found 

within the soluble Collapsed and Kirschberg Members. Infrequently folding and collapse 

is found within the RDM and Grainstone Members in association with larger underlying 

collapses within the Kirschberg Member.  

To date, the total mapped cave volume of the Travis County portion of the Barton 

Springs Segment is 20,500 m3 (725,000 ft3; Russell, 2007). Although not yet tabulated, it 

is assumed that the mapped caves in the Hays County portion of the Barton Springs 

Segment have a similar volume, because the aerial extent of Travis and Hays Counties on 

the Edwards outcrop area is roughly the same.  The mapped cave volume of the Barton 

Springs Segment constitutes about 3.4x10-5 % of the 6 x 1010 m3 (2.11x1012 ft3) total 

estimated aquifer volume estimated by Smith (2006, personal communication).  This 

percent of known cave volume is 3 orders of magnitude lower than the 0.017 specific 

yield estimated by Slade et al., 1986. This calculated volume of caves is a minimum 

estimate because there are likely many more caves and smaller voids that are 

undiscovered, insufficiently examined, undocumented, or yet unknown (Appendix B).  

Hydrostratigraphic units such as the Georgetown, RDM, and Basal Nodular Members are 

breached by fissures and shafts that are not reflected by cave volume estimates.  Some 

units or portions of units have limited surface exposure within the Barton Springs 

Segment, in particular the Marine/Cyclic Members and portions of the Dolomitic and 

Basal Nodular Members. 
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2.4 CONCLUSION  
Revised surface geological mapping defines the surface exposure of 

hydrostratigraphic units of the Edwards Group and Georgetown Formation, as well as the 

underlying units, and overlying confining units. Based on the surface mapping, the 

boundaries of the Edwards outcrop, eastern drainage, artesian, and eastern edge of the 

contributing areas were distinguished. The combined Edwards outcrop and eastern 

drainage areas are 241 km2 in size.  

The hydrologic properties of the Edwards Aquifer are geologically controlled. 

The branchwork morphology of caves in the Barton Springs Segment reflects a 

predominantly discrete recharge and discrete groundwater flow system. The depositional 

environment, diagenesis, fracturing, down-dropped and dipping faulted blocks, and 

subsequent dissolution play an important role in the evolution of the Barton Springs 

Segment. Conduit development is localized along the intersection of specific relatively 

soluble beds with specific extensional fractures and faults.  Solutional development is 

localized particularly along the intersection of fractures and specific soluble beds within 

the Marine, Leached, and Collapsed Members and Dolomitic Member. Permeability 

within the Kirschberg Member is localized within highly solutionally-evolved layers and 

is little affected by fractures. The intervals of greatest cave development are the 

uppermost pulverulitic bed on the Kirschberg, immediately underlying the Grainstone 

Member, other pulverulitic beds deeper within the Kirschberg Member, the Leached and 

Collapsed Members immediately above the RDM, other specific beds within the 

Marine/Leached Members, the beds within the Dolomitic Member immediately above the 

rhythmic beds, and other specific beds within the Dolomitic Member. The association of 

cave development above and below less-soluble beds (Georgetown Formation, RDM, 

rhythmic beds of the Dolomitic Member, Grainstone Member, Basal Nodular Member) 

suggests that contrasts in permeability play an important role in conduit development.  
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Faults and extensional fractures play a prominent role as discontinuities where 

selective fractures are solutionally enhanced. Solution development localized along faults 

and extensional fractures is particularly important for the development of fissures, 

vertical pits, and caves within the Georgetown Formation, Regional Dense, Basal 

Nodular, Grainstone, and Dolomitic Members of the Edwards Group. Extensional 

fractures that are unmodified by solution into planar fissures or rounded conduits are 

expected to be effectively closed at the water table depth and, therefore, relatively 

insignificant for groundwater flow or storage within the phreatic zone of the Barton 

Springs Segment. 



Table 2.1. Hydrostratigraphic units of the Barton Springs Segment. Modified from Small et al., 1996.
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Group Formation Member

Full 

Thickness 

(m)

Lithology Field Identification
General Hydrogeologic 

Properties

Alluvium <10 gravel loosely or unconsolidated limestone or shale high permeability

Colorado River Terrace Deposits <10 gravel loosely or poorly consolidated with quartz cobbles high permeability

Taylor Sprinkle 120 calcareous clay dark clay low permeability

Aust in 119 chalk

Inoceramus subquadratus , Inoceramus 

undulatoplicatus, Exogyra ponderosa,  Phyrygia 

aucella and occasional igneous deposits

gen. low permeabilty,  conduits 

possible where faulted or 

weathered on surface

Eagle Ford

South Bosque Shale  

Bouldin Flags        Cloice 

Shale               Pepper 

Shale

12 - 14 calcareous sandy shale

Fish fossils,Acanthoceras sp .,Eucalycoceras 

bentonianum ,Neocardioceras ,Romaniceras ,Coilopoc

eras ,Prionotropia,Alectryonia lugubris 

general low permeability 

Buda 11 - 18
nodular to massive 

porcelaneous limestone

Orange pelloids in massive beds, Budaiceras ,  

ammonites, Exogyra clarki , Pecten roemeri , 

Codiopsis texana  Whitney, and Mantelliceras 

commonly feeds shallow wells and 

small springs

Del Rio 15 - 18 clay Ilymatogyra ariet ina,  pyrite, gypsum seams low permeability clay

Georgetown 12 - 18
nodular to massive 

fossilferous limestone

Waconella wacoensis, Arctostrea carinata , 

Texigryphaea washitaensis ,  Neithea texana,  

echinoids, and ammonites. 

vertical fissure development

Cyclic and Marine undiv. 0 - 21 massive limestone chert and caprinids cavernous

Person
Leached and Collapsed 

undivided
21 - < 7

wackestone, mudstone, 

and grainstone with well-

sorted matrix

Toucasia , Chondrodonta , and sparse miliolid 

foraminifera

horizontal and vertical extensive 

cave deveopment

Regional Dense 4.5 - 10
well-sorted lt tan fissile 

mudstone

Pleuromya knowltoni , rarely Ceratostreon texanum, 

iron-oxide stains 

local aquitard frequently breached 

with vertical fissures

Grainstone 14 - 18
lt gray-white massive 

grainstone

Miliolid foramnifera, Chondrodonta , caprinids, turitella, 

mudcracks, and bedded chert 

small corkscrew passages and 

rooms. Serves  as competent roof 

over Kirschberg Mbr

Kainer Kirschberg 12 - 23
crystalline limestone and 

dolomite pulverulite

Terra rosa. Cladophyllia, toucasia, caprinid-bearing 

s iliceous remnants

extensive cave development esp. in 

pulverulitic beds

Dolomitic ~ 43
Highly bedded gen. with 

poorly-sorted matrix

Toucasia, Caprinid, Dictyoconus walnutens is.   

Nodular chert 

significant cave development 

primarily along f issures

Basal Nodular 16 - 18
fossilferous, nodular 

limestone

Texigryphaea  packestone intermediate miliolid 

grainstones and burrowed mudstone, echinoids, lower 

Ceratostreon Texanum  packstone

vertical pits and fissures. Produces 

many minor springs.

Underlying 
units

Trinity Glen Rose 150 - 250

Alternating massive 

limestone/dolomite and 
marl layers

dinosaur tracks, plant fossils, celest ite nodules , 

Trigonia , Pecten , Alectryonia carinata ,  Orbitolina 
texana foraminifera, various echinoids 

lit tle cave development documented 

here although supports abundant 

springs/wells.
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Figure 2.1 Selected sites of geologic discussion. Measured sections, specific 
well control points, and other geologic points of interest discussed in the text. 
The Edwards Group was originally known as the Barton Creek limestone 
because of the excellent exposure in the deeply incised creek. Note: most of the 
sites mapped here are not publicly accessible without permission by the 
property owner. 
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3 Campbell's Hole (Hill section)

4 Urban Assault (Hauwert section)

5 Botanical Gardens

6 Well 58-50-216

7 Deep Eddy Bluff (Hill section)

8 Blowing Sink (Hauwert section)

9 Midnight Cave (Hauwert section)

10 Marbridge (Hauwert section)

11 Wenzel/Stoneledge 

12 Antioch

13 well 58-50-411

14 Bowie HS

15 Upper Dolomitic Mbr

16 Well 58-42-915

17 Twin Falls

18 Sculpture Falls

19 well 58-50-1C1

20 Stacy Park well

21 Crippled Crawfish

22 Tucker Swallet

Travis County
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Fig. 2.2.  Surface hydrostratigraphic map of the Barton Springs Segment. 
Surface exposure of hydrostratigraphic units mapped in Small et al., 1996, 
and revised by Nico Hauwert (Jan. 2009 update).
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Figure 2.6. Surface hydrology areas. Based on surface mapping of 
hydrostratigraphic units in Small et al., 1996 as revised by Hauwert in January 
2009. 59



Figure 2.7. Observations of igneous deposits. Exposures of igneous deposits 
were mapped across the Barton Springs Segment.
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Ben White Blvd.

Area east of Congress Ave. 
was not mapped here



Figure 2.8 Ideal cave passage patterns. Worldwide cave passages are 
diagnostic of the recharge and groundwater flow processes that create them. 
Dot size indicates relative importance of recharge or flow process in developing 
specific cave passage patterns. Branchwork morphology is the most common 
and is characteristic of discrete recharge and flow. From Palmer, 1991 and 
Palmer, 2003.  
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Figure 2.9. Cave morphology of the Barton Springs Segment. The plan view of 5 
of the longer caves in the Barton Springs Segment show curvilinear and 
rectilinear branchwork morphology, that reflect discrete recharge through 
sinkholes and creek swallets and advective groundwater flow, according to 
Palmer’s (1991; 2003) classification (see Figure 2.8).  No caves in the Barton 
Springs Segment are known to have ramiform morphology that are characteristic 
of diffuse flow. Cave maps are from various authors are compliled by Texas 
Speleological Survey and Elliott (1997). Hydrostratigraphic units shown at cave 
passage level interpreted by Hauwert. Note that cave passages developed within 
the Kirschberg Member are highly influenced by bedding and commonly trend 
southeast, while passages developed within the Leached/Collapsed and 
Dolomitic Members tend to develop along fractures that most commonly trend 
northeast. 
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Chapter 3. Surface Recharge to the Barton Springs Segment 

3.1 INTRODUCTION 
In order to insure the Barton Springs Segment will remain a potable and highly 

productive water supply, an accurate understanding of recharge sources is critical for 

management practices, water-protection regulations, and preserve acquisition. Since 

1997, citizens of Austin approved over $100 million investment in water-quality 

protection lands within the Barton Springs Segment and since have protected 17% of the 

Edwards outcrop area with land purchases and conservation agreements.  The Barton 

Springs Segment also houses rare and listed-endangered karst species, required for 

protection by federal permit (Federal Register, 1997). Complex interactions between 

people and aquifer ecosystems may not be sufficiently understood now to fully evaluate 

their importance. Hays County, US Fish and Wildlife and conservation groups such as 

the Hill Country Conservancy and Nature Conservancy are also participating in land 

acquisition and landowner conservation agreements.  Knowledge of recharge sources is 

critical to most efficiently protect the most important lands with limited acquisition 

resources.  Through the combination of research, public education, and regulation 

practices such as disposing wastes and urban runoff into sinkholes are no longer 

commonplace (Appendix A). 

 

This chapter examines how surface recharge contributes to the Barton Springs 

Segment, including:  

(1) recharge infiltration through the soil,  

(2) development of karst structures that convey recharge from the surface and    

through the epikarst and vadose zones to the water table, and 

(3) recharge in large sinkhole basins. 
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This study uses a number of methods to examine recharge. Recharge estimates 

from other limestone areas of the world are compiled to estimate ranges of expected 

recharge. This study focuses on large upland sinkhole basins in the Barton Springs 

Segment that are commonly hypothesized to be the most significant upland recharge 

structures. Relations between geomorphological features (bowl morphology, bowl depth, 

and sinkhole catchment area of upland sinkholes) to recharge significance are examined.  

A representative number of combined catchments of sinkholes are mapped across the 

Barton Springs Segment. Site-scaled recharge is measured on two upland research sites. 

Recharge calculations from site climatic and hydrologic data are compared to 

calculations using chloride concentrations in rainfall, runoff, cave drips and Barton 

Springs.   

3.1.1.  Recharge in Karst 
The amount of recharge to an aquifer depends “largely upon the nature of the soil 

and rocks,” particularly in basins underlain by limestone (Maxey, 1964). Even in non-

karstic watershed basins, differences in runoff may depend more on type of bedrock than 

on soils, morphology, or annual precipitation patterns (Weyer, 1971). Limestone aquifers, 

even in cases where little primary porosity is present, are commonly permeable because 

of fracturing (Jakucs, 1977, p. 69) and dissolution. Karst landscapes have efficiently-

developed internal drainage and precipitation can infiltrate rapidly beyond the depth of 

transpiration and atmospheric evaporation (Jennings, 1985). The maturity of a karst area 

can be quantified by a pitting index, which is a comparison of internal drainage areas to 

the entire outcrop area (Williams, 1972). White and White (1979) found a ratio of 

internal drainage area to be 0.25 over the Mississippian limestones of the Appalachian 

Plateau and 0.06 over the Ordovician carbonates of the Valley and Ridge province.  The 

difference was attributed in part to the greater dolomite content of the Ordovician 

carbonates.   

The natural surface recharge of a karst area can be classified as:  
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(1) allogenic recharge, where flow from an upstream source area (such as the 

contributing area) infiltrates through recharge features (swallets) in the major 

creek channels.  

(2) authogenic recharge where rain falls directly onto the karst aquifer (such as the 

Edwards outcrop area). 

(2a) diffuse infiltration, and enters the aquifer through the soil and fractured 

rock matrix (Burdon and Papakis, 1963).  

(2b) internal drainage (also called internal runoff), where rainfall or runoff 

recharges the aquifer through sinkhole drains.  

(3) overflow caprock or perched aquifers (such from overlying confining units), 

where overflow water enters the aquifer through vertical shafts, soil pipes, and widened 

fractures overlying less-permeable material (White, 1999a).   

Karstification within the Edwards Group began in the Cretaceous Period during a 

long period of exposure, prior to deposition of the overlying Georgetown Formation 

(Abbott, 1977; Sharp, 1990). Cretaceous fracturing associated with the rise of the San 

Marcos Arch may have influenced the development of groundwater flow paths parallel to 

the Miocene Balcones Fault Zone (Kastning, 1986).  

Karst aquifers develop in soluble rock where groundwater flows through the 

dissolved openings (Aley, 2000b).  Karst areas are characterized by sinkholes, losing 

streams, caves, and large springs.  Mature karst terrains develop conduits that enlarge and 

connect recharge areas with discharge areas. Where favorable pathways exist between 

recharge and discharge areas, surface recharge points in creek bottoms can accept large 

volumes of creekflow and become swallets. For example, Barton Creek is hypothesized 

to have originally been a tributary to Williamson Creek, but was pirated by subsurface 

flow toward an early Barton Springs (Woodruff, 1984b).  The subsurface flow route 

eventually dissolved and eroded into the steep-walled stream channel it is today.  Incision 

and lowering of the base level of the Colorado River led to the lowering of active spring 

locations as well as the active conduits that feed them (Veni, 1992).  It is the localization 

of flow that creates preferential groundwater-flow paths that are single, well-connected 

conduits or a series of subparallel conduits that rapidly convey groundwater from 
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recharge to discharge areas.  Studies of karstic flow systems developed in Kentucky 

suggest that the flow paths resemble branching networks, where smaller branches connect 

to larger trunk conduits (Thrailkill, 1985; Quinlan, 1989). In karst areas in general, most 

cave development probably focused near the water table, although some development 

occurs in the vadose zone and below the water table (Ford and Ewers, 1978). Caves, 

conduits, and fissures originally developed deeper in the vadose zone or phreatic zone 

form important elements or surface recharge after surface denudation. 

Hypogenic processes are subsurface rather than surface recharge that can 

eventually support or even surpass epigenic karst development from shallow surface 

sources to discharge sites (Klimchouk, 2000). Hypogenic groundwater flows are thought 

to be driven by chemical or thermal gradients. The possible role of hypogenic karst 

development within the Barton Springs Segment from the Saline-Water Zone or 

underlying Trinity Aquifer has not been critically examined by any study. These sources 

are discussed in Chapter 4. 

The epikarst (or subcutaneous zone, White 1999a) is the “uppermost zone of 

exposed karstified rocks, in which permeability due to fissuring and diffuse karstification 

is substantially greater and more uniformly distributed in area, as compared to the bulk 

rock mass below” (Klimchouk, 2000a). Within the shallow epikarst, the enlargement of 

fractures by stress release and surface weathering typically play important roles in 

flowpath evolution (Klimchouk, 2004a).The epikarst is believed to be significantly higher 

in permeability than the deeper vadose zone (if present) as a result of stress release and 

weathering of rocks in contact with calcite-undersaturated surface waters and soils with 

relatively high carbon dioxide content (Klimchouk, 2000a).  Flow through the deeper 

vadose zone is anticipated to be more discrete than in the epikarst zone, with flow 

focused through horizontal perched conduits connected with vertical shafts (White, 1988; 

Klimchouk, 2000a). 

In karst areas, much surface runoff flows a short distance before recharging into 

sinkholes (dolines) or infiltrating into highly permeable karst soils (Meinzer, 1923, p. 

133; White, 1977; Jennings, 1985).  Recharge to karst aquifers can be discrete, such as 

flow entering a creek swallet, or diffuse, such as infiltration through soils (Aley 1975; 
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Jones et al., 2000). In a mature karst area of New Zealand, Gunn (1983) observed that 

more infiltration occurred through soils and macropores than through large sinkhole 

drains.  Clay and iron-rich soils, such as terra rossa, may block the bottoms of some 

recharge features and create temporary ponds and swamps over karst areas (Sawicki, 

1909; Lindley, 2005). 

As karst features mature, dissolving macropores or fractures can develop into 

solution-enlarged fissures, and eventually into nearly circular bowls (Jennings, 1985, p. 

114). Solution sinkholes have a direct relation between their diameter and depth 

(Coleman and Balchin, 1959; Ford, 1964; Jennings, 1975). In Canterbury, New Zealand, 

Jennings (1975) found the following relation (r2 = 0.87) between the depth and diameter 

of 90 sinkholes: 

Sinkhole depth (m) = 0.16 * sinkhole diameter (m) + 0.79 m (1) 

Joints and faults influence sinkhole morphology, create elongation along the fracture 

trend, and enhance sinkhole size, depth, and steepness (Lavalle, 1968; Kemmerly, 1976). 

Troester et al. (1984) observed that at the highest stage of maturity, a sinkhole develops a 

“star” pattern in aerial view as it pirates well-defined channels.  Similarly, sinkhole 

catchment basins progress in maturity from linear to hexagon shaped, although this ideal 

morphology is modified by topographical slope (Williams, 1972).  Kastning and 

Kastning (2003) described common karst geomorphic features, including spillways and 

recharge area for sinkholes. Characteristics and terminology for solution sinks are 

illustrated in Figure 3.1. 

Sinkholes that are created primarily as a result of collapse rather than recent 

surface solution are known as collapsed sinkholes and pitted dolines (Roglic, 1972). 

Collapsed sinkhole entrances are not created primarily by shallow surface dissolution. 

Therefore, they commonly have different recharge behavior and geomorphology than 

solution sinkholes.  Collapsed sinkhole entrances are created by erosion of the land 

surface over pre-existing caves. The presence of vertebrate remains in many Central 

Texas collapsed sinkholes indicates that much collapse occurred in the Late Pleistocene 

(Abbott, 1973). As the stress fields generated from an open cavity below reach the 

surface eventually collapse occurs (Aley et al., 1972).  Collapsed sinkhole development is 



 68

enhanced by other factors, such as loss of buoyant support of unstable materials from 

changes in the water table, enhancement of dissolution of supporting materials by surface 

flow diversion, placement of structures over underlying cavities, and other causes (Aley 

et al., 1972; Newton, 1984).  A detailed karst assessment of Camp Bullis north of San 

Antonio found that only 6.9% of the karst features were collapsed sinkholes (Veni, 1999).  

Jennings (1985) noted that collapsed sinkholes could be distinguished from solution 

sinkholes by their vertical walls and irregular diameter-to-depth ratios.  Because 

collapsed sinkholes open through thin roofs over pre-existing cave rooms, they 

commonly can be distinguished by underhanging or convex cross section (Hauwert et al., 

2005; White and White, 2006; Figure 3.1). Although collapsed sinkhole morphology is 

not specifically described by Milanović, an illustrative example (1981, p. 61) of a 

collapsed sinkhole is shown with an underhanging cross section. 

Shafts are vertical pipes inferred to be exposed conduits originally carrying flow 

from the vadose to the phreatic zone. Shafts commonly develop along fractures and faults 

through less-permeable units (White, 1988; Veni, 1999). Shafts may be part of a “stair-

stepped” cave system, which originated by carrying surface flows from a catchment area 

downward to the water table (White, 1988).  Shafts also have been associated with deeper 

hypogenic flows across underlying units that formerly were confining layers (Klimchouk, 

2000b). 

The term “karst depression” is used to describe soil-filled, immature sinkholes 

less than 0.3 m (1 ft) deep. These are solutionally developed and contain subsurface 

drains. The infiltration of karst depressions was the subject of a study by Lindley (2005, 

see also section 3.1.4.1). Karst depressions are very common across the Barton Springs 

segment and individually are limited in recharge significance both by their small 

catchments and the nature of fill material covering and filling their drains. The term 

“closed depression” is locally by others to denote a similar, sometimes nonkarstic feature, 

although this term is not used here since karst literature uses this term with wider 

definition to include all sinkholes (White, 1988).  
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3.1.2 Soil Properties 
Soil properties greatly influence the soil’s ability to transmit recharge and 

associated contaminants. Soils can be classified simply by horizons: 0 (plant residues), A 

(leaching zone), B (accumulation zone), and C (unconsolidated parent material from 

surface weathering) to recognize their origin and characteristics. These horizons reflect 

pedogenesis and layers may possess similar hydraulic properties. Contrasts in hydraulic 

properties within horizons, subhorizons, and the bedrock can create hydraulic 

heterogeneity within the unsaturated zone. 

The capacity of water to infiltrate soils depends on: 1) soil and underlying rock 

hydraulic conductivity; 2) soil thickness and structures, such as clay layers, surface 

compaction, roots, and piping; 3) initial water content from previous precipitation; and 4) 

time from beginning of precipitation, as infiltration rate tends to decrease over a rain 

event (Hillel, 1998).  In soils, water infiltrates as capillary suction, which directs water 

laterally, and gravity, which directs water downward. Laterally focused suction becomes 

less dominant as the infiltration rate increases (Hillel, 1998; Li et al., 2008; Sheng et al., 

2009).  Where continuous layers are present, low permeability layers limit infiltration. If 

moisture flows through the entire soil matrix (distributed flow conditions), then soil 

moisture gradients can be used to distinguish net upward or downward movement and to 

interpret the depth to the transient boundary where evapotranspiration or recharge 

dominates (Delin and Herkelrath, 2005). The infiltration capacity of the soil varies with 

soil permeability and once this capacity is exceeded by precipitation, surface runoff flows 

are generated (infiltration excess runoff, Horton, 1940). Highly structured clay soils and 

limited macropore development serves to locally reduce infiltration to the underlying 

bedrock (saturation excess runoff; Calvo-Cases et al., 2003). Rainfall interception, 

uptake, and transpiration by plants within the soil reduce the amount of water available 

for recharge.   

The degree of heterogeneity in soils can be complex, and it is difficult to gather 

sufficient data to fully characterize them. Grego et al. (2006) found that in an untilled 

agricultural field, even 102 test holes, spaced 10 by 20 m across a 3.4 hectare area were 

insufficient to characterize the soil moisture. Comparing chloride concentrations in the 
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soil and rainfall, De Silva (2004) found high variability of recharge across small areas in 

non-karstic test sites of Sri Lanka, Australia, Senegal, and the United Kingdom, where 

the coefficient of variation exceeded 0.4 for 12 out of 18 sites. 

Soil infiltration also varies with topography. Delin et al. (2000) measured 

recharge through the soils of a 2.7-hectare cornfield in Central Minnesota using well-

hydrograph analysis, chloroflorcarbon dating, and a soil water balance. The lowland 

portion of the site recharged at a rate of 29 cm/year and the upland portion recharged at a 

rate of 18 cm/year. The difference between upland and lowland recharge was primarily 

attributed to focusing of runoff at lower elevations, soil lamination of the upland site, and 

a coarser texture soil composition in the lowland portion. Li et al. (2008) found lower soil 

hydraulic conductivity with lower elevation in large sinkhole basins because of the 

accumulation of fine-grained sediment. The combination of focused runoff and 

diminished soil hydraulic conductivity in the lower elevations of a large sinkhole basin 

increases the amount of recharge through the main sinkhole drain. 

Preferential flow occurs through only a fraction of the total soil volume (Hillel, 

1998). These preferential flow paths include dessication cracks, roots, wormholes, and 

unstable wetting fronts (Hill and Parlange, 1972; Bevin and Germann, 1982; Dekker et 

al., 2001). Rapid recovery of tracers through soils and shallow Glen Rose limestone 

bedrock to a trench was attributed to roots associated with dense juniper thickets and 

bedrock conduits (Taucer et al., 2005).  The presence of vegetation significantly 

enhanced the infiltration through soils covering sinkholes in Spain, although the presence 

of rock fragments had no effect on infiltration (Li et al., 2008). A recharge study in a non-

karstic area of western Australia found that half of the recharge was through macropores 

(Sharma and Hughes, 1985). A common limitation of unsaturated zone models is that 

they tend to poorly estimate fracture and matrix interactions, and the models can simulate 

superficial observations without capturing small-scale processes that may overshadow 

soil-water flow (Fairley et al., 2004).   

With increasing karst maturity, the spatial heterogeneity of infiltration through 

soils increases (Kiraly, 2002). In soils overlying karst areas, macropores such as soil 

pipes and sinkholes can direct infiltration rapidly into the underlying bedrock (Jennings, 
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1985). Soil is commonly thin on karst landscapes and may be completely absent at 

sinkhole openings where drainage is focused. The National Research Council (2001) 

concluded that “there exists a body of field evidence indicating that infiltration through 

fractured rocks and structured soils does not always occur as a wetting front advancing at 

a uniform rate.”   

Tracing has been used to study transport through soil; tracer transport has 

typically been found to be faster than expected (Quisenberry and Phillips, 1976, Kung et 

al., 2000; Helmke et al., 2005). In fact, even in apparently homogeneous, structured, and 

clay-rich soils, preferential flow is more the rule than the exception (Dekker and Ritsema, 

1994; Flury et al., 1994; Kelly and Pomes, 1998). Jarvis et al. (1987) found that 70% of 

the rainfall infiltrated dry clay soils through desiccation cracks. Transport of wastewater 

effluent constituents was observed through 30 m of unsaturated, structured sand, silt, and 

clays, resulting in water-quality changes in the underlying water table (Vengosh and 

Keren, 1996). The transport times for chloride, sodium, and boron were 0.5 years, 2 

years, and 2 years, respectively, indicating that clays have limited capacity to retain 

metals and organic constituents. In this case, saturation of available sites limited cation 

exchange and absorption.  

3.1.3 Sources of Surface Recharge to the Barton Springs Segment 
Sources of surface recharge include recharge derived from rainfall over the 

Barton Springs Segment and its contributing area, as well as urban leakage from surface 

land use.  Existing measurement of recharge sources of the Barton Springs Segment has 

been sparse. Water balances from other karst areas worldwide are examined for ranges of 

recharge rates on carbonate rocks. 

3.1.3.1. Water Balances in other Karst Areas 
Water balance studies require accurate measurement of rainfall, 

evapotranspiration, runoff, and recharge. The measurement of spatially distributed 

rainfall is frequently a limiting factor in the accuracy of water balance and rainfall/runoff 

models (Dawdy and Bergmann, 1969; Wilson et al., 1979; Amorocho, 1982; Nicks, 

1982; Beven and Hornberger, 1982; Hamlin, 1983; Shah et al., 1996).  Potential 
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evapotranspiration has been used to estimate actual evapotranspiration (evaporation and 

transpiration or ET). The Thornwaite and Mather (1955) method has commonly been 

used to estimate potential evapotranspiration in the past.  However, calculation of 

evapotranspiration using this method overestimates actual values because it does not 

account for water deficits that may reduce evapotranspiration (Alley, 1984).  Hess and 

White (1974) found that 19% less evapotranspiration occurred in the karst areas of the 

Mammoth Cave area than in nonkarst areas of the same river basin.  The difference in 

evapotranspiration was attributed to the rapid internal drainage system and quick 

infiltration of surface runoff.  This suggests that in water balances where 

evapotranspiration and recharge are not directly measured, the contribution of karst 

recharge is often underestimated.   

The creek characteristics can influence how much recharge occurs in an aquifer. 

Where catchment areas extent upstream of the karst aquifer, allogenic sources can 

increase recharge to the karst aquifer. The limits of allogenic sources will be governed 

both by catchment size as well as the recharge capacity of the creek channels. The 

amount of allogenic recharge may vary between different karst aquifers depending on the 

amount of contributing area catchment. The relative proportion of upland recharge can be 

greater than expected because within creek valleys there are more recharge rejected from 

the aquifer because of shallower water tables and higher amounts of evapotranspiration 

(Karrenberg and Weyer, 1970; Weyer, 1972).   

Dublyanskii et al. (1984) evaluated the water balance of a 150-km2 upland 

sinkhole basin over 18 years in Crimea, Ukraine, with precipitation gauges, soil and 

evaporation pans, condensation chambers, and 13 weir flow gauging stations. They found 

the amount of precipitation becoming evapotranspiration, runoff, and recharge amounted 

to 33%, 33%, and 34% of the input water, respectively.   

A 1-year long water balance of the karstic Carboniferous limestone of Mendip 

Hills, England, was conducted from 1969 to 1970 (Atkinson, 1977). Of the measured 

precipitation averaged from 10 rain gauges within the spring catchment, 45% left as 

evapotranspiration estimated by Pennman-Monteith, 1% was added to soil moisture and 

water-table storage, and 54% recharged. The dry valleys of the limestone plateau are 
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sufficiently mature to the point that all runoff enters sinkholes except during extreme 

flooding conditions. Less than 20% of the spring discharge was attributed to leakage from 

underlying aquifers.  Discrete (“quickflow”) and diffuse (“baseflow”) recharge were each 

estimated to compose about half of Cheddar Springs flow, based from springflow 

recession of one of the largest of the 15 major discharge springs. Atkinson (1977, p. 100) 

interpreted the diffuse infiltration to be composed of epikarst drainage from areas 

between the sinkholes and underlying leakage. 

New technology allowed more precise measurement of evapotranspiration of 

natural landscapes. Eddy correlation is the most direct measurement of 

evapotranspiration on vegetated landscapes (Ham and Heilman, 2003). Eddy correlation 

relies on turbulent transfer of heat and water vapor to measure both sensible and latent 

heat flux directly above the canopy. Beginning in the 1990s, evapotranspiration was 

measured at Central Texas sites using Bowen-ratio energy balance and eddy-covariance 

direct measurement towers. Dugas et al. (1998) estimated that 65% of rainfall was 

recycled to the atmosphere as evapotranspiration, 30% infiltrated, and 5% ran off over a 

5-year water balance over the Trinity Aquifer in Uvalde County. An analysis of available 

Bowen ratio-derived evapotranspiration, rainfall, and streamflow led Huang and Wilcox 

(2005) to surmise that upland recharge over the San Antonio Segment was more than 

10% greater than previous estimates.  Similarly, early studies of the adjacent Trinity 

Aquifer to the west (Muller and Price, 1979) estimated only 1.5% of rainfall recharged 

that aquifer, while more current estimates cluster around 7% (Mace et al., 2000b). 

Ockerman (2002) estimated that 44% of the recharge to the Edwards Aquifer in Bexar 

County originated from stream channel losses, and the remaining 56% originated as 

direct infiltration on upland areas. 

A compilation of recharge estimates from karst aquifers worldwide is presented in 

Table 3.1.  The percent of recharge from rainfall on the outcrop areas vary from current 

values for the Trinity Aquifer at 7% up to nearly 100% in Hungary and Tunisia, except 

for 1986 estimates for the Barton Springs Segment which are 0.9%. A range of 30 to 60% 

of recharge from rainfall is included in the range of 14 of studies referenced in Table 3.1, 
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while 6 studies outside the Central Texas area include values lower than 30% in their 

range. 

3.1.3.2. Rainfall and Climate 
Surface recharge to the study area is affected by its climate. The climate of the 

study area is a transition between subtropical subhumid and subtropical humid (Larkin 

and Bomar, 1983).  The climate is strongly influenced by the flow of tropical marine air 

from the Gulf of Mexico. Air moisture content overall decreases from east to west.  The 

southern and eastern portions of the Edwards Plateau receive short-term heavy 

precipitation from orographic rise of air masses across the Balcones Escarpment. 

Orographic precipitation in central Texas results primarily from: (1) a relatively steep rise 

of about 500 m (1,500 feet) over 40 to 80 km (25 to 50 miles) from the coast and (2) 

warm air masses from the coast that can be extremely unstable (Petersen, 2005). The 

average annual rainfall in Austin from 1856 to 2002 is 85 cm (33.4 in), based on a 

monthly compilation of measured rainfall by David Johns of City of Austin Watershed 

Protection and Development Review Department. 

3.1.3.3. Water Balance of the Barton Springs Segment 
In the Barton Springs Segment, the need to distinguish between recharge from 

upland areas and creek beds became evident in the 1970s and 1980s, when rapid 

population growth required both more water supply and greater urbanization. A water 

balance for the Barton Springs Segment was based on data from continuous flow or 

water-level stations upstream and downstream of or across the Edwards outcrop area on 

Barton and Onion Creeks collected over a 42-month period between July 1979 and 

December 1982 (Woodruff, 1984a; Slade et al., 1986).  Continuous flow data was 

collected upstream of the Edwards outcrop area on Williamson, Slaughter, and Bear 

Creeks while partial flow records were reported to have been collected downstream of the 

Edwards outcrop area for the study. Flow in Little Bear Creek downstream of the 

Edwards outcrop area was reported for three days in 1980 and for three days in 1983. 

Flow loss data, supplemented with estimated runoff coefficients for the intervening 

Edwards outcrop area between the five main creek channels, estimated the proportion of 
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recharge contributed by major creeks and intervening areas (Table 3.2).  Intervening 

areas are the Edwards outcrop areas outside the five main creek channels includes upland 

and prominent stream channels. Upland areas, by contrast, are areas of the Edwards 

outcrop area above the major creeks and their major tributaries. Fifteen percent of the 

recharge was estimated to occur in the intervening areas between the major creek 

channels, and the remaining 85% to recharge through the beds of six major creeks.  The 

estimated 3-year recharge volume was found to be within 10% of Barton Springs 

discharge volume over that period. Only about 0.9% of the mean rainfall was estimated to 

recharge the aquifer directly through intervening areas of the Edwards outcrop area, as 

85% of the rainfall was estimated to be lost to evapotranspiration, 9% left as surface 

runoff, and 5% recharged the Edwards Aquifer through the major creeks that drained the 

contributing area (Woodruff, 1984a). Over this 42-month water balance, 

evapotranspiration was not directly measured; instead, typical evapotranspiration values 

from a constantly watered evapotranspiration sewage lysimeter were reported as support 

of the values used in the water balance.   

In Slade et al. (1986), the amount of rainfall that was assumed to recharge over 

the intervening areas between the main channels of some major creeks over the Edwards 

outcrop area (0.9%) was significantly smaller than values measured in other karst areas 

over the world or over the adjacent Trinity Aquifer (see Table 3.1). The Edwards Aquifer 

has relatively well-developed karst compared to the Trinity (Elliott and Veni, 1994) and 

250 times greater average yield (Mace et al., 2000b). Consequently, the Edwards Aquifer 

must have a more efficient recharge structure and higher recharge to rainfall ratio than 

less karstic limestones, sandstones, and shales.  In fact the 0.9% of rainfall allocated to 

recharge of the intervening areas by Woodruff (1984a) was less than the 1.0% of 

recharge from rainfall estimated for the Eagle Ford Shale outcrop, based on a one-year 

water balance in Bell County (Harrison, 1996).  The assumption that the recharge of the 

intervening Edwards outcrop area is 0.9% (Woodruff, 1984a) is contrary to observations 

by early investigators (Hill and Vaughan, 1898; DeCook, 1957; Appendix A) that the 

Edwards Aquifer has a well developed recharge structure. The underestimation of upland 

recharge may have significantly affected the results of the 1980s water balance study for 
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the Barton Springs Segment.  The relatively small proportion of total recharge attributed 

to upland areas by Woodruff (1984a) has been used as the rationale for lower levels of 

protection for upland recharge areas (TxDOT, 1989; URM, 1983; Woodruff, 2001). 

Thus, it is important to understand the role of upland recharge in the water budget of the 

Barton Springs Segment.   

3.1.3.4. Urban Leakage 
Urban leakage is one source of leakage to the Barton Springs Segment. Utility 

trenches, utility lines, and wells create enhanced pathways for recharge to enter the 

aquifer (Sharp et al., 2001).  Urban leakage originates from irrigation, infrastructure 

leakage through water lines, wastewater lines, septic tanks, and lift station releases 

(Garcia-Fresca, 2004; Garcia-Fresca and Sharp, 2005).  For the entire City of Austin 

service area, Garcia-Fresca (2004) estimated that surface recharge decreased from 53 

mm/yr to 31 mm/yr because of increased impervious cover from urbanization, but that 

urban leakage of water, wastewater, and irrigation of 94 mm/yr essentially doubled 

natural recharge in the Austin area. Less than half of the Barton Springs Segment lies 

within the City of Austin service area. The urban leakage contribution specific to the 

Barton Springs Segment has not been quantified. 

3.1.4 Upland Recharge Study 
Several hypotheses were developed for this study. The first is that the Barton 

Springs Segment is a mature karst aquifer and is expected to have recharge rates 

comparable to other karst areas of the world. The previously estimated value of less than 

1% average recharge from rainfall on the Edwards outcrop area is probably too small. 

Second, upland sinkholes are relatively efficient for infiltrating rainwater and runoff 

compared to other Edwards outcrop areas. Third, the sinkhole bowl enlarges in response 

to greater calcite-undersaturated flows that reflect the size of the catchment area. 

Two research sites were selected to examine upland recharge. These are centered 

on two large sinkhole basins because these have measurable discrete and diffuse 

infiltration components. Large catchments, the lack of human disturbance, the limited 

number of channels entering these two sinkholes, and assured access to the sites through 
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the City of Austin made them ideal study sites. This study was initiated in 2002, and 

preliminary results were reported in Hauwert et al. (2005). The methodology of this study 

is introduced in section 3.2. 

3.1.4.1 Description of the Research Sites 
The two sites are the J17 and the Tabor water-quality protection land (WQPL) 

sites (Figures 3.2, 3.3, and 3.4).  Both lie on the Edwards outcrop area of the Barton 

Springs Segment and are bisected by major creeks or their tributaries.  Away from the 

creeks, both sites are relatively flat (<3% slopes), and contain large, broad internal 

drainage basins terminating in sinkholes. A number of well-developed drainages on both 

sites lose their definition or never carry flow to the nearby creeks. Runoff as sheet flow 

tends to converge within gentle to well-defined channels that convey flow across much of 

the sites.  Soil covers the surfaces of both sites, although bedrock exposure is common. 

The soils are mapped on both sites as Speck Stony Clay Loam (Werchan et al., 1974). 

Werchan et al. (1974) described this soil as being slowly permeable with low water 

capacity, containing up to 80% chert and other rock fragments on soils with slopes of 

1.5% to 3.5%, and having soil depths of 0.36 to 0.46 m (14 to 18 in). Both sites contain 

predominantly juniper (Juniperus ashei ) and Escarpment live oak (Quercus fusifo rmis) 

thickets with intermittent grasslands. The types of vegetation found on the sites are 

provided by personal communication from Sanders (2007) and Windhager (2007). They 

are listed in Appendix H. 

3.1.4.1.1 Headquarter Flat Sink (J17 Tract) 

Headquarter Flat sinkhole and cave (HQ Flat) is located on the COA J17 Water-

Quality Protection Land tract in South Austin (Figures 3.2 and 3.3).  A detailed 

description of HQ Flat is provided by Russell (2004).  In 1984, the former landowner, Ira 

Yates, reported that the cave “takes considerable water after rains.”  Russell suggested 

the cave was a significant recharge feature and he cleared rocks and debris around the 

entrance to enhance recharge. He described an estimated 1,600-m2 (0.4 acre) depressed 

area in the drainage leading to the sinkhole that had to fill before surface flow could 
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continue to the cave.  Russell estimated that the catchment area drained “an extensive 

area to the south and west” of about 0.065 km2 (16 acres).  Much of the known extent of 

the cave had been investigated by cave explorer Mike Warton in the 1980s, when the 

cave was mapped to a depth of 10 m (32 ft). 

A second hydrogeologic study (Ford, 2000) describes surface drainage and karst 

development on the J17 tract. This report described surface flow on the J17 tract to be 

primarily sheet flow toward the Danz Creek tributary of Slaughter Creek (Figure 3.3). It 

described HQ Flat as a “small sink” and noted “the recharge potential to the aquifer from 

the sink is probably small to medium since the surface opening is moderate in size but the 

drainage area affected by the sink is relatively small.”  From the surface entrance the 

report believed the cave “appears to pinch close at about 5 feet (1.5 m).”    

These two reports offer divergent descriptions and evaluations of the same karst 

feature.  Such contradictory views of the same feature or site are common in recharge 

feature assessments and point to the need for a quantitative examination of the recharge. 

An infiltration study on the J17 site compared karst depressions (small upland, 

soil-filled, immature sinkholes) to background soil infiltration (Lindley, 2005). Lindley 

measured an average infiltration for soil-filled karst depressions of 0.16 cm/hr that ranged 

from 0.06 to 0.3 cm/hr. Infiltration on background soil plots, where karst features were 

not observed, averaged 0.25 cm/hr and ranged from 0.06 to 0.4 cm/hr. However, once 

excavated the infiltration rates of the karst depressions exceeded those of background soil 

plots by 15 to 30 times. From dye tracing, it was observed that water infiltrated into 10- 

to 20-cm diameter conduit drains in the base of the soil-filled karst depressions, following 

plant roots and rock fragment/soil interfaces through the soil. Two karst depressions, only 

one of which was on J17, had open apertures prior to excavation for Lindley’s study and 

measured infiltration rates of 3.45 to 5.7 cm/hr. Even though clay accumulations lowered 

the relative infiltration rate of small upland sinkholes or karst depressions, the small karst 

depressions infiltrated a higher portion of runoff than the local background soil plots 

because runoff was focused to lower elevations (Scanlon et al., 1999; Lindley, 2005).  

The Kirschberg bedrock underlying the shallow subsurface of J17 and Tabor has 

characteristics of a soil. The pulverulitic layers are weakly cemented and appear soft and 
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sandy, even when examined in caves (such as Whirlpool, Get Down, and Flint Ridge 

caves) more than 13 m (40 ft) below the ground.  Intensive dissolution focused within the 

Kirschberg Member have made collapsed bedrock blocks a common subsurface feature. 

Terra rossa commonly is encountered within the bedding planes and other cavities. Terra 

rossa (a reddish, clay rich soil with siliceous remnants) also overlies the Kirschberg 

bedrock as a true soil.  The Kirschberg Member characteristically is highly recrystallized 

and broken into small and large blocks.  Roots penetrate below the bedrock surface and 

can be observed in Kirschberg Member caves.  Some of these same characteristics, 

including an apparently thick, clay-rich soil, root penetration, loose bedrocks blocks, and 

soft bedrock, can give the false impression that the Kirschberg Member, which is actually 

the most permeable bedrock unit of the Edwards Aquifer, is a soil of low permeability.   

3.1.4.1.2. Flint Ridge Cave (Tabor Tract) 

Flint Ridge Sinkhole and Cave (Flint Ridge) are located on the COA Tabor Water 

Quality Protection Land tract in South Austin (Figure 3.4).  The geology, hydrology, 

biology, speleological features, and the history of exploration in Flint Ridge are described 

by Elliott (1997), Veni (2000), and Russell (2004), The cave is listed in a joint US Fish 

and Wildlife permit by the COA and Travis County as a preserve for karst invertebrate 

species of concern. Texas Department of Transportation (TxDOT, 1989) concluded that 

Flint Ridge was not a major recharge feature: that its catchment area was limited to 0.003 

km2 (0.75 acres) and that water entering the cave likely fed “seeps or ephemeral springs” 

along Bear Creek rather than supply direct recharge to the Edwards Aquifer water table. 

Because of its assumed limited catchment area, TxDOT estimated that a water volume of 

2,500 m3 (2 acre-feet) would exceed the actual average annual recharge to the cave.  Veni 

(2000) estimated the surface catchment of the cave to be 0.16 km2 (40 acres) in area, that 

within the catchment of Flint Ridge, an average of 3.6% of rainfall would recharge, and 

that typical intense storms would yield an average of 415 to 593 m3 of runoff to the cave 

entrance.  From high water marks inside the cave after a 20-cm storm in October 1998, 

Veni estimated about 1,000 m3 of flow had passed through the cave, but believed some of 

the recharge must have entered through other features rather than via the cave entrance of 
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Flint Ridge.  Veni (2000) acknowledged the difficulty in estimating recharge from Flint 

Ridge and the need for installation of gauges to measure flow directly. 

3.2. METHODOLOGY 
A methodology was developed to assess upland internal drainages across the 

Barton Springs Segment based on geomorphology.  HQ Flat and Flint Ridge sinkhole 

basins were monitored to measure their recharge contribution. 

3.2.1. Locate and Map Recharge Features and Areas Using GPS and GIS 
First, the common geomorphological characteristics of internal drainage basins 

were examined. Then the extent of these features were identified and mapped across the 

Edwards outcrop area of the Barton Springs Segment.  A methodology and classification 

for quantifying the most recent surface dissolution associated with a recharge feature (as 

opposed to subsurface dissolution caused by paleo groundwater flow processes or post-

depositional dissolution that occurred during the Cretaceous Period) was developed for 

use in the Barton Springs Segment, including catchment area (also called drainage or 

recharge area), rim (characterized by a sharp break in slope around the entrance), and 

aperture (conduit; Figure 3.1).  Each feature was examined to determine whether solution 

or collapse processes were the primary agent in its development at the surface.  For this 

study, sinkholes where solution was the primary agent in development of the surface 

opening were recognized by concave, “bowl-shaped” cross sections, while collapsed 

sinkholes were recognized by a convex cross section (Figure 3.1, Hauwert, et al., 2005).  

This study characterizes “internal drainage basins”, defined here as natural areas 

where at least 90% of the runoff generated within a given catchment area does not 

discharge from the basin on the surface under natural conditions. This condition is 

attributed to the combination of a solution-enlarged sinkhole bowl that is capable of 

temporarily storing surface runoff and the permeable drain present at the base of 

sinkholes that transmit runoff into the subsurface.  As defined here, internal drainage 

features and catchment areas are not necessarily large; a small karst feature can capture 

more than 90% of the runoff from a relatively small catchment area.  However, this study 

examined only large internal drainage basins and did not include areas where many small 
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sinkholes or karst depressions may serve a similar function of intercepting runoff, except 

where those smaller karst features lie within mapped internal drainage basins for larger 

sinkholes.  

“Open internal drainage basins” are the most common type consisting of a 

sinkhole basin capable of capturing more than 90% of the runoff generated within its 

catchment. Open internal drainage basins are naturally formed and have open apertures 

such that runoff readily enters the cave. Open internal drainage basins are the subject of 

this study. 

“Ponded internal drainage basins” are similar in origin and recharge 

characteristics, but they differ in that sediment and other debris have obstructed the drain. 

Greater evaporative losses can be expected from ponded internal drainage basins.    

An “artificial internal drainage basin” is similar to a natural internal drainage 

basin, but has its entire drainage diverted to a manmade depression, such as a rock 

quarry.  Where the artificial internal drainage basin extends to the water table, the 

recharge contributed by these features may be diminished by greater evaporative losses 

compared to open internal drainage basins.   

Open internal drainage basin, ponded internal drainage basin, and artificial 

internal drainage basins and catchment areas were identified and mapped across the entire 

Barton Springs Segment using a combination of tools including:  

(1) interviews with local cave explorers, speleologists and property owners,  

(2) discovery by COA or BS/EACD staff,  

(3) closed contours indicated on 1 and 3 m (2 and10 ft) contour topographic maps 

and supporting catchments,  

(4) dark-toned circular features on aerial photos,  

(5) field Global Positioning System (GPS) delineation of rims and surface divides 

around sinkholes,  

(6) flood debris and incised discrete channels to sinkholes may also indicate the 

presence of a large catchment area,  
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(7) well-defined channels or flow that abruptly terminate, 

(8) runoff trailed to sinkhole during or shortly after a sufficient rain event. 

Assessment of sinkholes included recognizing the recharge feature, categorizing 

its recharge, locating the feature, measuring its bowl volume, mapping its catchment area, 

and excavating features to assess subsurface extent. A Trimble XRS GPS (acquired by 

BS/EACD in 1999 through an Environmental Protection Agency 319h grant administered 

by the Texas Commission on Environmental Quality) and a Trimble Pathfinder GPS 

(acquired by the City of Austin) were used to locate known recharge feature openings, 

measure larger sinkhole rim dimensions, and delineate catchment areas for sinkholes. 

Because of historical practices described in Appendix A, all rockpiles are customarily 

examined for airflow, voids from washed-in fill, internal drainage conditions, fill 

extending below the surface, and historical aerial and topographic maps in order to 

discover filled sinkholes and caves. The karst features were mapped in ArcGIS version 

9.1 software, produced by Environmental Systems Research Institute (ESRI).  Sinkhole 

bowl volumes were calculated either by (1) simple application of an ideal cone formula 

using the field measurement of the rim area and bowl depth (“C” in Figure 3.1 and 

glossary) or (2) site survey of larger sinkhole bowls. The northern half of the Flint Ridge 

catchment area was surveyed professionally for the City of Austin WQPL (Figure 3.4). 

Historical cave and sinkhole information is available primarily through the Texas 

Speleological Survey (TSS), which compiles reports from its volunteers who map and 

investigate caves.  

3.2.2. Water Balance of Sinkhole Basins 
HQ Flat and Flint Ridge have been monitored continuously for flow to the cave 

entrances since July 2002 and March 2003, respectively.  In both basins nearly all surface 

runoff flows to the cave through a limited number of discrete drainages. The catchment 

area of each sinkhole was estimated by field inspection with a GPS, as well as 2-foot 

contour interval map coverages derived from 2000 aerial surveys (COA).  Flow from 

94% of the catchment area for both features converges though drainages that were 
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monitored during the study. The remaining areas drain around the measurement 

structures or directly to the sinkhole drains. 

Within a closed sinkhole basin of known area over a selected time interval, the 

amount of rainfall can be proportioned as follows: 

 
 P = ET + I + DR + S      (2) 

 
where: 

P= Precipitation volume (m3) 
ET = evapotranspiration flux volume (m3) 
I = infiltration from soil and lesser karst features into the underlying bedrock 
(diffuse infiltration, m3)  
DR = internal runoff that enters the cave drain (discrete recharge, m3)  
S = change in water storage in soil during the reference period (m3) 

 
A 505-day period, from April 2, 2004, to August 20, 2005, was selected for 

measuring water balance. The starting day represented the first time synchronized 

monitoring instruments were operational, produced the highest quality data, and avoided 

data gaps affected by power problems experienced early in the monitoring.  

3.2.2.1 Precipitation Measurement 
Precipitation was measured primarily from readings from visual plastic All-

Weather rain gauges at HQ Flat and Flint Ridge sites. The gauge orifice was placed 700-

1,000 millimeters above the ground to meet World Meteorological Services and United 

States standards (Shaw, 1994).  The gauges were placed in relatively open areas with no 

trees or other obstructions present in a 45-degree vertical plane measured from the 

ground horizon. The visual rain gauges are accurate to within 0.0254 cm (0.01 inch) from 

June 2004 to present and 0.254 cm (0.1 inch) from 2002 to May 2004. These visual rain 

gauges are designed with a funnel cap that reduces evaporative loss compared to an open 

vessel. One of the visual rain gauges was checked daily for 3 weeks from November 23, 

2006, to December 14, 2006, and was found to have no measurable (<0.025 cm) 

evaporative losses.  The gauge test does not rule out that greater evaporative losses occur 
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in the summer months, but their long-term readings did not under-report, on the basis of 

comparison to calibrated tipping-bucket totals. Even though the gauge at Flint Ridge site 

was read less frequently than the gauge at HQ Flat, roughly at 2 to 4 week intervals, its 

station had a slightly higher precipitation total suggesting that evaporative losses were 

insignificant.  

Additional automated precipitation measurements were taken primarily using 

three 0.0254 cm (0.01-inch) Rainwise tipping bucket rain gauges with HOBO dataloggers 

owned by City of Austin and stationed at J17 HQ Flat, at Tabor tract Flint Ridge, and 

farther west on the Tabor tract near Bear Creek (Figures 3.3 and 3.4). Tipping-bucket rain 

gauges are prone to plugging from bird droppings and require careful maintenance.  The 

Rainwise tipping buckets require a small calibration shift, based on verification with a 

graduated cylinder as well as correlations among other stations and visual rain gauges. 

Monthly correlations from the visual rain gauges and tipping buckets, as well as 

comparison of expected versus measured tip counts with a graduated cylinder, were used 

to develop a calibration shift for the tipping buckets, which otherwise under-reported 

precipitation.  Supplemental rain gauge information was collected periodically by 

additional ISCO rain gauges using an ISCO 3230 logger, but because of greater power 

needs and complexity, these gathered only periodic data. Each tipping-bucket rain gauge 

was calibrated using a 500-ml graduated cylinder. Monthly totals of rainfall were 

compared at all gauges to find potential data gaps. Missing daily data were replaced with 

data from the closest rain gauge.  

3.2.2.2. Measurement of Discrete Recharge into Caves 
Recharge to the underlying aquifer consist of: (1) discrete recharge, where 

internal runoff enters the opening at the lowest point of the sinkhole and (2) diffuse 

infiltration, where surface runoff passes through the soil, epikarst, or smaller recharge 

features and percolates to the water table.  The flow entering the cave drain at the lowest 

elevation of HQ Flat and Flint Ridge sinkholes was measured as discrete recharge. The 

measurement of runoff at these sites also estimates runoff generated outside of internal 

drainage basins from upland areas to creeks in the Edwards outcrop area. 
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3.2.2.2.1 HQ Flat 

Discrete recharge was measured using a ISCO 3230 flow meter installed at a weir 

(June 30, 2002, until April 1, 2003) or flume (April 15, 2003 to present) on the drainage 

channel flowing to HQ Flat (Appendix G).  The flume was an aluminum 0.6 m (2 ft) H-

flume. Using ArcGIS and site observations, 94% of the runoff to HQ Flat flows through 

this single channel from the west, which makes the site ideal for runoff monitoring. A 0.3 

m-high dirt berm was placed south and west of HQ Flat to divert overland flow within the 

natural basin from the south to the channel entering the west side of the sink.  The design 

of weirs and flumes used in this monitoring was adapted from Shaw (1994) and 

Kilpatrick and Schneider (1983).  

The possible error from the flow structure, with periodic independent flow meter 

checks, in a stable channel when the structure is not exceeded is about +5 to 8% (Slade, 

2004; Harmel et al, 2006). The ISCO 3230 flow meter has level accuracy of 0.003-0.01 

m that varies with magnitude of water-level change and typical long-term calibration 

change accuracy of 0.5% (Teledyne ISCO, 1999). Additional error in level measurements 

occurs when temperature deviates from 22oC.  

Other possible errors associated with flow measurements are biased toward 

underestimation of the flow. The flow entering HQ Flat from local runoff generated off a 

0.01-km2 (2.7-acre, or 6% of entire HQ Flat catchment) area immediately east of the 

sinkhole was not measured. Flumes and weirs can leak, the channels monitored do not 

include all of the flow to the sinkholes, equipment problems can lead to data gaps, and 

occasionally flow is below or exceeds the sensitivity of the measurement structure. 

Leakage was measured using a Marsh McBirney flow meter flow downstream of the 

structure, and corrected in the data analysis for one period where the leakage was found 

significant. The measurement range of the 0.62-m (2-ft) H flumes and compound wiers 

are 0.04 to 300 l/s (0.0014 to 11 ft3/s) and 0.01 to 140 l/s (0.005 to 5 ft3/s), respectively. 

Flows below or above these structure designs are omitted.  Flow exceeded the flumes 

capacity on several occasions at both HQ Flat and Flint Ridge sinkholes.  
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3.2.2.2.2. Flint Ridge 

In order to evaluate whether or not other open internal drainage basins had 

discrete recharge in proportion to their catchment areas, flow monitoring was conducted 

at Flint Ridge.  Three defined drainages entering the sinkhole rim were monitored. Flow 

to the two largest drainages was metered using a 0.6 m (2-ft) aluminum H flume in each. 

The smallest of the three drainages was metered using a compound weir cut from 

unpreserved 2-cm (0.75-in) plywood and edged with aluminum angle iron. Each drainage 

was monitored by an ISCO 3230 bubbler flow meter. Local runoff generated within a 

0.017-km2 (4.1-acre) area immediately south of the sinkhole is not measured by the flow 

meters.  

3.2.2.3. Measurement of Evaporation and Transpiration 
Evaporation and transpiration (evapotranspiration or ET) were measured nearly 

continuously using eddy covariance.  Ten-hertz measurements of wind speed and 

acoustic temperature were made with a three-dimensional sonic anemometer (CSAT-3, 

Campbell Scientific), and 10-Hertz measurements of water vapor concentration were 

made with an open path infra-red gas analyzer (LI-7500, LI-COR).   The anemometer and 

gas analyzer were controlled by a micrologger (CR23X for the first 10 months, then a 

CR5000, Campbell Scientific), and driven by solar power. The instruments were placed 

15-m high and above the canopy on a Rohn tower.   

Eddy covariance requires measurement of the vertical component of airspeed and 

variations in absolute humidity from mean humidity: 

            
                 w′ρv′        
 Evapotranspiration =      ρw      (3) 
 

where: 

w′ = vertical component of airspeed (time average in m/s) 

ρv′ = variations in absolute humidity about the mean value (time average) 
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ρw = mean value of absolute humidity (converted from watts/m2 to mmoles/m2s to 
cm/30 min interval) 

 
Thirty-minute fluxes of latent heat and sensible heat for a 505-day test period are 

calculated on 10-hertz datasets following procedures outlined by Litvak et al. (2003). 

Initial data gaps were caused by power outages, lowering of the instrument for annual 

calibrations, and particulates (including raindrops) obscuring the glass lens of the gas 

analyzer. The readings represent average evapotranspiration for the fetch area, which 

varies with wind direction and sensor height.  As a general guideline, the fetch ranges 

from 20 to 200 times the instrument height, with the farther fetch extending in the 

direction of prevailing winds (Monteith and Unsworth, 1990), although the actual fetch 

will vary with wind speed and other factors.  The ET flux tower lies near the center of the 

Headquarter Flat sinkhole catchment, which has a 1-degree slope to the north, southeast, 

and southwest. The ground slope increases in elevation from the ET tower to the south at 

a maximum slope of 3 degrees. Because of the minimal slope in the direction of 

prevailing winds, the flux field was not rotated to account for slope. 

The ET data were filtered to remove poor-quality data, including readings taken 

when the wind approached the flux sensors from the north, where the tower distorts wind 

velocities, and during rain intervals.  Of 24,285 30-minute intervals comprising the 505-

day test period, 5,585 data gaps were present after this quality filtering. At this stage the 

filtered values are corrected for energy balance, based on the Bowen ratio of sensible heat 

to latent heat.  To fill in the gaps remaining after filtering and energy balance, monthly 

correlations of postprocessed and filtered ET data were related to net radiation readings. 

On a monthly basis, the ET to net radiometer correlations had R2 correlations greater than 

0.7 and averaging 0.83.  Where gaps existed in the J17 tower net radiation record, 

readings from an ET tower located 21 km south on the Texas State University Freeman 

Ranch were used. Measured nighttime ET values are relatively very small so that data 

gaps of nighttime intervals are assumed to be zero.  Following net radiation gap filling, 

813 daytime 30-minute gaps remained. Where up to three consecutive data gaps 

remained, the gaps were filled by averaging adjacent ET values.  Where larger data gaps 

remained, such as an entire day, the daily total was calculated as 0.75 of the potential 
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evapotranspiration values reported by Texas A&M University from a weather station at 

the City of Austin Davis Water Treatment Plant, based on an R2 correlation of 0.56. Most 

of these gaps occurred during the 4 months of the test period because of insufficient 

power, a condition that was later corrected. The accuracy of measuring an average 

evapotranspiration across the fetch area using eddy covariance with energy balance 

corrections is about + 5% (Ham and Heilman, 2003).  

Additional instruments used for meteorological and energy balance measurements 

include air temperature and humidity (HMP45C, Vaisala), net radiation (Radiation and 

Energy Balance Systems Q7.1), incoming and upwelling solar radiation (LI-190 SB, 

Kipp and Zonen), and photosynthetic photon flux density (PPFD, LI-190SA, Licor).   

Conservative water-quality constituents, such as chloride and isotopes (oxygen 

and deuterium) are used to estimate recharge to aquifers (Vacher et al., 1980; Jones, 

2000; Scanlon et al., 2002). In order to use chloride to estimate recharge accurately, 

several conditions must apply: (1) downward “piston” flow is occurring through the 

phreatic zone to the water table; (2) rainfall is the only significant source of chloride; (3) 

the lithology is well drained; (4) the land surface is relatively flat and runoff is minimal; 

(5) no chloride sinks are present; and (6) no significant change in land use occurs 

(Sukhija et al., 1996; Hendrickx and Walker, 1997; Scanlon, 2000.) A potential source of 

chloride is the dissolution of limestone rock (White, 1965; Moller et al., 2007). Gee et al. 

(2005) found that chloride estimations of recharge from soil water underestimated 

recharge measured by lysimeters by 2 to 8 times and warned that mineral dissolution 

could contribute to such errors. As discussed in section 2.3, the Edwards Group was 

deposited in a marine setting and evaporites occur within some of its members. The 

Saline-Water Zone is enriched in chloride and sulfate and leakage from this source is 

observed in some wells and Barton Springs. Chloride levels can be elevated in 

groundwater from various anthropogenic sources (COA, 1997, Panno, et al., 2002).  

The accuracy of the chloride mass balance method may be compromised in 

fractured or soluble rocks where preferential flow focuses flow through the unsaturated 

zone (Scanlon, 2000). The application of chloride concentrations for estimating recharge 

is more accurate at lower recharge rates, and an approximate maximum resolution limit 
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of 300 mm/year is suggested (Scanlon, et al., 2002). Given local average annual rainfall 

of 850 mm per year, any recharge above 35% of rainfall exceeds this resolution limit. 

Consequently, because of sources of chloride in the rock and low resolution of the test, 

factors that can potentially underestimate recharge using chloride in the Edwards Aquifer 

and should be carefully considered. 

Evaporation was estimated independently by comparing water quality of rainfall, 

runoff, cave drips, and Barton Springs. Chloride and sulfate concentrations were 

measured in surface runoff and cave drips from the Tabor research site by UT graduate 

student Brian Cowan and me as part of his master’s thesis project (Cowan et al., 2007).  

Perennial cave drips in Barker Ranch Cave, about 5 m below the surface, were sampled 

during baseflow, during rain events, and after at least three rain events in 2007. Barker 

Ranch Cave has an internal drainage basin adjacent to the Flint Ridge catchment. Drip 

samples from the Flint Ridge Drip Room, which is about 47-m deep, also were sampled. 

Runoff quality samples were collected during and shortly after rain events with 

autosamples and grab samples at Flint Ridge and on the surface near Barker Ranch Cave. 

Because the runoff was sampled within internal drainage basins within the Tabor tract 

this runoff enters Flint Ridge and Barker Ranch Caves as discrete recharge. A composite 

rain sample was collected over May 2008 on the roof of University of Texas Geology 

Building using a rainwater collector under a rainfall quality program led by Dr. Jay 

Banner. A rain sample was collected in October 2000 using a rain water collector by City 

of Austin Watershed Protection and Development Review Department Water-Quality 

Management staff. Barton Springs samples were collected by City of Austin Watershed 

Protection Department and USGS staff. The samples were analyzed at the Lower 

Colorado River Authority Laboratory using EPA 300.0 method although some samples 

were analyzed with City of Austin Water Utility laboratory and USGS laboratory. 

Rainfall collected locally were compared to annually averaged values from rainfall water 

quality reported for National Atmospheric Deposition Program stations in Attwater Prarie 

Chicken National Wildlife Refuge (Attwater) and Sonora. 

In this study, we can reduce the potential problems of aquifer mixing of chloride-

rich groundwaters and chloride enrichment by rock dissolution by comparing chloride 
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concentrations in cave drips that are expected to be beyond the effects of evaporation. 

Evaporation is not expected below the 5-m cave drip depth (Scanlon et al., 2002). 

Because both chloride and sulfate should increase in concentration directly proportional 

to evapotranspiration, the ratio of sulfate to chloride is used to determine when other 

processes, such as aquifer mixing or rock-water interaction, account for increasing 

concentrations. Sulfate to chloride ratio trends are used to distinguish which phase (cave 

drip or aquifer spring) is most representative for deriving evapotranspiration rates. Both 

sulfate and chloride should be enriched at the same rate by simple evaporation, and any 

change in their ratio is assumed to result from other processes. The cave drips lie in 

internal drainage basins where no runoff leaves the catchment.  

The water lost through evapotranspiration is calculated by comparing the chloride 

concentration in rainfall with subsurface chloride concentrations using the following 

relation: 

ETwq = Crw/Cgw       (4) 

where: 

Crw = concentration in rainwater (mg/l) 

Cgw = concentration in subsurface groundwaters (mg/l) 

3.2.2.4. Measurement of Soil Moisture and Diffuse Infiltration 
Available soil-moisture storage is the amount of releasable water held in the soil, 

and varies at any given time between the field capacity and permanent wilting point 

(Ferguson, 1994).  Soil moisture was monitored for the purposes of selecting a water 

balance interval over which no net change in soil moisture storage occurred. By selecting 

intervals with no net change in soil moisture storage, the amount of water in the soil can 

be neglected for the purposes of the gross water balance. Alternatively, the data could 

estimate changes in soil moisture storage, such as for short-term water balances, although 

larger errors may result because of the heterogeneity of the soil and soil moisture. As the 

water balance time interval increases, the maximum average soil moisture change 

becomes less significant in comparison to the net precipitation accumulated over that 

interval.  Soil moisture data were also utilized in the calculation of the energy flux 
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balance.  A third purpose for soil moisture data is to examine heterogeneity in the soils 

across the research sites and to characterize infiltration through the soils to the bedrock.  

Soil thickness was estimated by hand-dug test holes, soil trenches dug with a 

backhoe, and outcrop observations to determine the volume of soils across the internal 

drainage basin sites (Figure 3.3).   Gravimetric analysis was used to determine the water 

content.  Soil trenches allowed examination of the soil to bedrock transition and 

distinguished the bedrock from weathered rock. The trenches and hand-dug holes are 

useful for examining the distribution of soil thickness and soil moisture at the time of 

excavation as a reflection of soil heterogeneity.  Seven trenches were excavated on the 

J17 tract by TxDOT staff using a backhoe as part of a separate study by soil scientist 

Larry Wilding on local soils.  Backhoe soil trenches are relatively disruptive to the 

natural landscape systems, so relatively few trenches were excavated. Soil moisture 

samples were not collected within several hours of precipitation events so that surface 

moisture was not directly transmitted to excavated sampling depths. 

Gravimetric soil moistures were calculated as described by Black (1965). Samples 

were collected from a small excavated pit or backhoe-dug trench. Samples from 

representative depths were taken from the wall of the excavation and collected in sealed 

plastic bags. Three representative portions were taken from each bag, weighed on a 

weighed sheet of filter paper, and oven dried for at least 24 hours. After drying, the mass 

of the soil portions were remeasured.  Soil volume was measured after drying by water 

displacement in a graduated cylinder. Additional tests were conducted to examine the 

potential for undermeasurement of soil moisture from moisture loss from the sealed bags 

prior to oven drying; and condensation of moisture lost from the soil within the bags. A 

number of plastic bags containing soil samples were sealed, weighed, oven-dried for at 

least 24 hours to measure how much moisture could be expected to be lost through 

leakage and condensation. The method selected to estimate the possible significance of 

moisture loss overestimated the possible leakage because samples were not subjected to 

that high a temperature for so long between collection and processing. Of 14 leakage 

measurements, the leaked moisture mass averaged 3.5% and ranged from zero to 6.1% of 

the total soil moisture. Fourteen bag condensation measurements were made, which 
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averaged 0.3% of total sample moisture mass and ranged from 0.016% to 1.6%. Based on 

these possible error estimates, the leakage and condensation are relatively small 

compared with the precision of the test. 

Soil-moisture sensors measured soil moisture continuously at a test site near the 

ET tower.  Continuous measurements of water content at 2.5 cm, 5 cm, and 9 cm depth 

were made using Campbell Scientific water content reflectometer probes (CS615) 

installed horizontally.  Soil temperature and heat flux were measured continuously at 

depths of 2.5 and 10 cm using thermocouple probes and heat flux plates. Heat flux plates 

were installed at a depth of 5 cm, and storage heat flux in the zero to 5 cm layer was 

calculated from both soil temperature measurements at 2.5 cm depth and estimates of 

heat capacity (Kimball and Jackson, 1979). The depth to bedrock and change in soil 

moisture from the start to the end of a reference period were used when it was necessary 

to estimate the gross change in water storage within the soils.  

Over long periods of time, the change in storage within the soil and epikarst 

becomes less significant in comparison with cumulative volumes of rainfall or recharge. 

Consequently, although there can be significant error associated with estimating the total 

soil water storage of a site over short intervals, but over long periods the effect of these 

errors are negligible.  Over the scale of an individual rain event, soil moisture content is 

very important in determining whether the field capacity is exceeded and runoff will 

occur.  In this study, once water descended below the soil it was assumed to recharge the 

underlying aquifer. Some water storage is expected in the epikarst and vadose zones. By 

selecting soil moisture cycles for start and stop intervals, similar epikarst and vadose 

conditions are expected such that no significant change in storage has occurred. The 

estimation of no change in soil-moisture storage is not intended to imply that the water 

flow from the soil, epikarst, or vadose is not significant over a water balance cycle, only 

that the amount of storage was approximately the same at the beginning and end of a 

cycle. 

Diffuse infiltration through soil and minor recharge features likely is highly 

variable across both basins (Dingman, 1994, p. 247-249).  Diffuse infiltration through 

soils is determined in a relative sense in this dissertation since the methodology used does 
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not distinguish how much diffuse flow through small pores versus, rapid flow through 

macropores in the soil, and direct infiltration into bedrock where soil is absent. Diffuse 

infiltration is the only component of the water balance that is not directly measured, but is 

estimated as the remainder of the water balance.  The diffuse infiltration (I) for the water 

balance is calculated by: 

 
I = P– DR – ET         (5) 

3.2.2.5. Measurement of Runoff Into or Out of Basins 
No runoff leaves either sinkhole basin under any flood conditions because of the 

bowl configurations of the basin and the capacity of the basin to absorb runoff generated 

within the basin.  Following major flood events, high water marks along adjacent Danz 

Creek, a tributary to Slaughter Creek on the J17 tract, were walked to ensure no 

floodwaters from the creek entered the HQ Flat basin.  Even after the largest rain event 

observed in November 2004, high water marks indicated that Danz Creek would have to 

rise an additional 0.6 to 1 m (2 to 3 ft) and fill a wide area before it could flow into the 

HQ Flat basin.  A flood retention dam built on Danz Creek upstream of HQ Flat also 

serves to stabilize the downstream flood flows such that they are not likely to cross the 

topographic divide and enter HQ Flat.   



3.3. RESULTS 
The upland recharge types were characterized by sinkhole morphology. The 

recharge of an internal drainage basin was measured using a water balance approach, 

which was verified using chloride concentrations in rainfall, runoff, and cave drips. 

3. 3.1. Sinkhole Hydrology and Geomorphology Characterization 
 One hundred fifteen internal drainage basin sinkholes were identified within the 

portion of the Barton Springs Segment recharging to Barton Springs, with a combined 

catchment area of 21.5 km2 (8.3 mi2).  Ninety-five open internal drainage basins were 

mapped across the Edwards outcrop area contributing to Barton Springs with a combined 

catchment area of 16.7 km2 (6.5 mi2). Thirteen open internal drainage basins, with a net 

catchment area of 0.9 km2 (0.3 mi2), were identified within the portion of the Barton 

Springs Segment over the Cold Springs groundwater basin.  The catchment area for HQ 

Flat was determined to be 0.19 km2 (46 acres) in size. This is larger than the 0.065-km2  

(16-acre) area estimated by Russell and Jenkins (2002) and the “moderately small” 

catchment area described by Ford (2000).  The catchment area for Flint Ridge is 0.28 km2 

(69 acres) in size, which also was larger than the previous estimate of 0.003 km2 (0.75 

acres) by TxDOT (1989) and 0.16 km2 (40 acres) by Veni (2000).  Twenty-two ponded 

internal drainage basins were identified across the Barton Springs Segment, with a 

combined catchment area of 4.0 km2 (1.5 mi2). The one artificial internal drainage basin 

identified was an abandoned quarry with an estimated catchment area of 0.9 km2 

(0.3mi2). The percentage of the Edwards outcrop area feeding Barton Springs (212 km2 

or 82 mi2) that was mapped to comprised open internal drainage basins, ponded internal 

drainage basins, and artificial (quarry) internal drainage basins is 8%, 2%, and 0.4%, 

respectively.  

The bowl volume of 33 solution features was compared to its associated 

catchment area (Figure 3.5). The unfiltered plot of bowl volume versus catchment area 

has a no significant correlation, perhaps suggesting that the relationship may be affected 

by complex factors other than sinkhole maturity, such as the solubility of different rock 

types or anthropogenic modifications to the sinkholes.   
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The relation between bowl volume and catchment area appears to be influenced 

by variations between the hydrostratigraphic units. The largest bowl volumes and 

catchments are developed in the Kirschberg or Leached and Collapsed Members (Figure 

3.5). The Grainstone Member, Regional Dense Member, and Basal Nodular Member are 

less soluble than other members of the Edwards Group, and, therefore, have subdued 

bowl development. There is considerable scatter in the relation between bowl volume and 

catchment for smaller sinks developed within the less soluble units. This may be 

explained that the same amount of runoff generated from a given catchment area 

develops a smaller bowl in less soluble rock types.  

Some of the largest internal drainage basins, such as the catchment to Blowing 

Sink, may contain multiple large bowls. The bowl volumes and catchment area for 

complex internal drainages, where multiple solution sinks exist within a single internal 

drainage basin, can be combined to reflect the net surface dissolution of the basin. 

Anthropogenic factors strongly influence sinkhole bowl volumes and catchments.  

Of 33 sinkholes examined for bowl volumes and catchment areas in this study, six were 

obviously filled, six had catchment areas dissected, and three were both filled and 

dissected.  However, the 33 sinkholes were selected purposely as being relatively 

unimpacted internal drainage basins; hence the overall proportion of anthropogenically-

affected sinkholes across the Barton Springs Segment is much higher. By filtering out the 

15 obviously impacted sinkholes, the relation between bowl volume and catchment 

improves the relation between natural sinkhole bowl volumes and their catchment area to 

an R2 of 0.52 (Figure 3.6). 

By filtering out sinkholes developed within the less soluble RDM, Grainstone, 

and Basal Nodular Members and the anthropogenically filled and dissected caves, and 

summing those catchments with multiple large solution sinkholes, 15 upland internal 

drainage basins remain of the 33 sinkholes examined (Figure 3.7).  The best fit is a linear 

relationship where the catchment area in square meters is 300 times the bowl volume in 

cubic meters.  This relation has a high R2 of 0.9. The relation between sinkhole bowl 

volume and catchment area in their natural form provides a useful tool for assessing 

sinkholes within the Edwards Aquifer. Large shifts below the general trend in bowl 
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volume to catchment area may suggest a feature that originally had a larger catchment 

area that was affected by anthropogenic drainage diversions (Figure 3.6).  

On the J17 and Tabor research sites, the caves found followed the general 

morphological influence predicted based on underlying hydrostratigraphic units. Large 

solution bowl sinkhole basins, such as HQ Flat and Flint Ridge, were limited to 

exposures of the Kirschberg, Leached and Collapsed Members. Where the contact of the 

Grainstone and Kirschberg Members was exposed on the sites, a line of at least four large 

collapsed sinkholes caves are present within the HQ Flat catchment area (Figure 3.3). 

The Grainstone Member was acting as a competent roof while the immediately underling 

pulverulitic bed of the Kirschberg dissolved or was eroded within the paleophreatic zone. 

The three collapsed sinkholes within the HQ Flat Sink basin serve as visible examples of 

macropores where sheet flow from the hillside could enter the bedrock without passing 

through any soil cover.  

3.3.2. Water Balance Results 
The water balance for HQ Flat sink shows recharge and evapotranspiration 

percentages similar to those of other karst areas (Table 3.1). Over a 505-day period, 68% 

of the rainfall returned to the atmosphere as evapotranspiration.  The remaining 32% of 

the rainfall falling on the HQ Flat basin recharged with 26% infiltrating through the soils 

into the underlying bedrock and about 6% flowing into the cave drain at the lowest point 

of the sinkhole as discrete recharge (Figure 3.8).  The 160 cm of rainfall measured over 

the 1.4 year reference interval was 21% above the local annual average rainfall of 81 cm. 

Over a single 2002 rain event, during which the ground was near saturation prior to 

precipitation, the amount of discrete recharge to HQ Flat Cave was 42% of the rainfall.  

Preliminary measurements from a 348-day water balance of ET of 58%, diffuse 

infiltration of 34%, and discrete recharge of 8% were reported for this research by 

Hauwert et al. (2005; Table 3.3). The difference in results can be attributed to the longer 

505-day interval, over which rainfall declined from 30% above average to 21% above 

average. For the longer 505-day water balance the ET data was refined by correcting 
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directly measured ET by eddy covariance to match ET measured by energy balance, as 

recommended by Twine et al. (2000).  

A test period was selected to compare the percentage of rainfall constituting 

discrete recharge in the other internal drainage sinkhole basin, Flint Ridge, which has a 

catchment area that is 150% that of HQ Flat. A 1,140-day interval from July 15, 2003 to 

August 29, 2006, was used because this was the longest interval commencing after both 

sinkhole flow stations were operating where rainfall averaged typical precipitation 

amounts of 81 cm (32 inches) per year.  Over the 1,140-day interval, discrete recharge at 

HQ Flat measured 3.4% of rainfall while 2.6% of rainfall entered Flint Ridge Cave, 

which are essentially identical values.  

No measureable change in soil-moisture storage occurred over the 505-day water 

balance interval. The volumetric soil moisture was 20% + 2% at the start and end of the 

selected water balance. In addition, the potential error of change in soil moisture storage 

can be examined using a theoretical example of the 505-day water balance where the 

starting and ending soil moisture was very different. The potential error to the water 

balance can be calculated for a 505-day interval for a hypothetical case where large 

change in soil moisture storage had occurred and assuming an average soil depth and 

porosity. Typical soil thickness depths within the HQ Flat basin were 60 cm or less on the 

northern half of the catchment basin, and about 12 to 30 cm or less on the southern 

portion (Figure 3.9). Over the water-balance interval, the maximum change in soil 

moisture storage of a hypothetical homogeneous soil from a very wet period to a dry 

period (or vice versa) is 20% of the soil volume, excluding the uppermost 2 cm depth 

which varied by 50% of the soil moisture volume. Assuming an average 30-cm soil 

depth, during the 505 day water balance interval, the change in soil moisture storage 

would theoretically be 11,170 m3 of 55,850 m3 total soil volume, or 3.8% of the 297,850 

m3 of rainfall over the HQ Flat catchment basin. The maximum possible error in a 

theoretical water balance where large changes in soil moisture storage had occurred 

declines to 2.3% of the 485,600 m3 of rainfall over the 1,140 day (three year) water 

balance interval. This theoretical example shows that the potential error of changes in soil 

moisture storage becomes less significant as the water balance interval increases. 
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However, the combination of selecting an interval with identical starting and ending soil 

moisture and a sufficiently long water balance interval lowers the possible effects of 

changes in soil moisture storage to be within the +2% potential maximum soil moisture 

measurement error or 0.4% of the 505-day water balance and 0.2% of the 1,140-day 

water balance. 

TxDOT dug soil trenches along a north-to-south transect during the week of 

October 2, 2006, which was at least 2 weeks after a September 18, 2006, rain.  Soil 

samples also were analyzed from a canopy and open site near the ET tower.  The trenches 

revealed some variation in soil depth and soil moisture across the sinkhole catchment that 

reflects heterogeneity.  Most of the trenches excavated from October 2 to 4, 2006 had 

overall increasing soil moisture with depth, which suggests evapotranspiration processes 

are predominant in the soils compared to deeper infiltration on the day the trenches were 

excavated (Figure 3.10).  A few of the trenches or holes showed decreasing gradients 

near the middle of the soil profile that may reflect water diversion by roots or macropore 

drainage. Much of the drainage to bedrock occurs shortly after precipitation events such 

that the proportion of soil moisture contribution to recharge diminishes as ET increases 

over a single soil moisture recession cycle. Shallow cave drips were continuously 

monitored in a separate study by Cowan et al. (2007), and were found to drain from the 

soil and shallow epikarst in Flint Ridge and Barker Ranch Caves on the Tabor research 

site, except during some drought conditions. 

The movement of water through the soil can be examined by increases in soil 

moisture following a rain event. Figure 3.11 depicts the effects of two rain events 

(August 10 and September 11, 2005) on soil moisture at various depths. Gravimetric soil 

moistures in test pits at depths up to a maximum of 37 cm increased in less than 8 hours 

after the start of the rain event. The deepest sensors at 9 cm showed increasing soil 

moisture less than 30 minutes after the start of the rain. Soil moisture data from the 

September 2005 cycle show an upward soil moisture gradient down to a 30 cm depth 

where the gradient reverses to an overall downward gradient. The shallow sensor data 

indicates a downward soil moisture gradient that reverses 5 days after the rain event, 

although there are no associated shallow gravimetric soil moisture analysis from depths 
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of 3 cm to verify the sensor readings during this interval.  From limited observation of the 

variation in soil moisture, it appears that, following a sufficient precipitation event, 

infiltration penetrates the entire soil column within a matter of hours. Within hours or 

days of a rain event, evaporation draws moisture from the soil to a depth that varies from 

as deep as 12 cm at some sites and times, but as deep as 30 to 47 cm at other sites and 

times. The ability of the soils to infiltrate rainwater rapidly was verified by a separate 

study on the Tabor tract, which observed that tracers poured on the surface penetrated the 

entire soil column into a 5-m deep cave within hours following natural rainfall events 

(Cowan et al., 2007). 

3. 3.3. Estimation of Recharge From Chloride Concentrations  
Chloride concentrations increase from rainfall and runoff to shallow cave drips 

(5-m deep Barker Ranch Cave) to deeper cave drips (47-m deep Flint Ridge Drip Pit), to 

spring samples (Table 3.4). A plot of chloride versus sulfate/chloride concentrations of 

various water sources over and within the Barton Springs Segment is presented in Figure 

3.12. The arithmetic mean runoff value of chloride was 0.95 mg/l (n=22) after two 

outliers were removed. The Barker Ranch Cave drips were collected from a depth of 5 m 

and had arithmetic mean chloride concentrations of 2.46 mg/l (n=38).  

The ratio of sulfate to chloride peaks in cave drips samples compared to ratios 

from rainfall (except Sonora ratios which were all the highest), runoff, deep cave drip, 

and spring ratios, which is interpreted here to reflect a change in processes that increase 

chloride concentration from evapotranspiration process to another process such as rock 

dissolution.  Such a process shift could account for increases in chloride concentration 

within the vadose and phreatic zones beyond the expected depth of significant 

evapotranspiration. The ratio of chloride concentrations in the runoff to cave drips, 

rainfall to cave drips, and Attwater rainfall to Barker Ranch Cave drips were 0.49, 0.39, 

and 0.26, respectively (Table 3.4). 

Although chloride concentrations in the Tabor site runoff were on the average 

0.31 mg/l lower than concentrations in the two rainfall samples, sulfate concentrations in 

the runoff averaged about 1 mg/l lower than in the rainfall. The reasons for this could be 
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that the runoff undergoes significant interflow through the clay-rich soils, leading to 

some reduction in sulfate by partitioning. A second reason could be there is atmospheric 

variation in sulfate concentrations not characterized by two rainfall samples.  

3.4. Discussion 
It is not surprising that much recharge to the Barton Springs Segment would occur 

within the major creek channels.  Stream flow generated within the relatively large, 

upstream contributing area flows over the Edwards outcrop area through the major creek 

channels.  In addition, much of the intervening upland area of the Edwards outcrop area 

generates flow to the major creek channels.  However, because the 1980s water budget 

was based on limited data, recharge from the upland areas was underestimated. Smart and 

Hobbs (1986) suggested that in karst areas it is possible to quantify recharge from major 

creeks through flow loss measurements, but that an aquifer-wide water balance required 

measurements of upland recharge. Critical data missing from the original water budget 

were tracing of groundwater divides, measurement of upland recharge on the Edwards 

outcrop area, changes in storage over the water balance interval, lack of complete flow-

loss data from the major creeks, and discharge to Cold Springs.   

Flow loss measurements on Barton Creek from 1979 to 1981 between Loop 360 

and Lost Creek were used to estimate its contribution to Barton Springs (Slade et al., 

1986).  Additional recharge occurs in Barton Creek downstream of Loop 360, although 

this recharge was considered insignificant.  Since 1996, groundwater tracing during high- 

and low-flow conditions show that recharge from Barton Creek upstream of Loop 360 

and downstream of Lost Creek flows to Cold Springs and not Barton Springs (Hauwert et 

al., 1998; Hauwert et al., 2004a).  If the 1978 to 1981 water balance volumes were 

modified to assume that only 10% to 50% of the flow from Barton Creek originally 

attributed actually discharges from Barton Springs, then the water budget requires an 

additional 27% to 36% of recharge above the measured major creek-bottom flow loss 

(Table 3.2). The 10 to 50% range of the original 24% recharge contribution assumed 

from Barton Creek to Barton Springs is an upper and lower range of my best estimate.  

Assuming that the 1980s water balance is representative, this 27% to 36% of Barton 
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Springs discharge then could potentially be from upland recharge, instead of the 15% 

originally estimated.  This study does not suggest that this reinterpretation creates an 

adequate water balance for the Barton Springs Segment, but rather, suggests that upland 

recharge is higher. In order to refine this aquifer-wide water budget, a new water budget 

is required over a longer interval where minimal change in storage occurs, that 

incorporates correct groundwater basins and includes flow loss from all major creeks and 

sample upland areas. Such a water budget should be verified and include recharge 

sources delineated by geochemical methods. 

In Slade et al. (1986), the amount of rainfall that was assumed to recharge over 

the intervening areas between the main channels of some major creeks over the Edwards 

outcrop area (0.9%) was significantly smaller than values measured in other karst areas 

over the world or over the adjacent Trinity Aquifer (see Table 3.1). The Edwards Aquifer 

has relatively well-developed karst compared to the Trinity (Elliott and Veni, 1994) and 

250 times greater average yield (Mace et al., 2000b). Consequently, the Edwards Aquifer 

must have a more efficient recharge structure and higher recharge to rainfall ratio than 

less karstic limestones, sandstones, and shales.  In fact the 0.9% of rainfall allocated to 

recharge of the intervening areas by Woodruff (1984a) was less than the 1.0% of 

recharge from rainfall estimated for the Eagle Ford Shale outcrop, based on a one-year 

water balance in Bell County (Harrison, 1996).  The assumption that the recharge of the 

intervening Edwards outcrop area is 0.9% (Woodruff, 1984a) is contrary to observations 

by early investigators (Hill and Vaughan, 1898; DeCook, 1957; Appendix A) that the 

Edwards Aquifer has a well developed recharge structure. The underestimation of upland 

recharge may have significantly affected the results of the 1980s water balance study for 

the Barton Springs Segment.  The relatively small proportion of total recharge attributed 

to upland areas by Woodruff (1984a) has been used as the rationale for lower levels of 

protection for upland recharge features (TxDOT, 1989; URM, 1983; Woodruff, 2001). 

Thus, it is important to understand the role of upland recharge in the water budget of the 

Barton Springs Segment.   

Internal drainage sinkholes are some of the most mature surface karst features on 

the Edwards outcrop area of the Barton Springs Segment. They show relatively high 
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efficiency for transferring a given rainfall volume per catchment area into recharge.  This 

efficiency (32%) is much higher than larger-scaled studies of the Barton Springs Segment 

have previously recognized (0.87%, Senger, 1983; Woodruff, 1984; Slade et al., 1986).  

Most recharge (28% of rainfall) occurred on the sinkhole slopes that are similar in many 

aspects to other slopes across the Edwards outcrop area. Over average rain conditions, 

3% of rainfall enters the cave drain of internal drainage basins that distinguishes internal 

drainage basins from other upland areas. In this regard, the results of the current study 

might be more representative of upland recharge within the Barton Springs Segment, 

particularly until more recharge data from across the Edwards outcrop area becomes 

available.   The reasons that internal drainage sinkholes and upland areas in general are 

relatively efficient compared to creek-bottom recharge may be a combination of a 

number of factors: 

1) In well-developed bowls of mature sinkholes within internal drainage basins, 

nearly all of the runoff generated within the catchment area can be stored if not 

immediately transmitted through the sinkhole.  On the J17 HQ Flat Research site 

this runoff constitutes 3% of rainfall under average rainfall conditions, though 

during individual events when the soils are previously saturated half of the rainfall 

may become runoff within a sinkhole basin. Very little, if any, surface runoff 

contributes to downstream creeks inside internal drainage basins. In contrast, 

many creek-bottom swallets experience flows that exceed their recharge capacity. 

In addition, the proximity of the water table to creek-bottom swallets increases the 

potential that some recharge will be rejected. Upland internal drainage sinkholes 

can play an important role in capturing runoff during large rainfall events or 

following rainfall events when the major creeks are already flowing. 

2) Through surface piracy, as well as bowl and drain enlargement through 

dissolution, mature sinkholes transmit surface water relatively rapidly below the 

surface to a depth where the water is not subject to significant evaporation and 

transpiration. 
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3) The majority of upland recharge occurs during and shortly after rain events when 

humidity is relatively high and evapotranspiration is relatively low (see Figure 

3.13).  

4) Most upland recharge directly infiltrates through the soils despite the presence of 

clay-rich layers. The soil, epikarst, and vadose zone serve to store water, and this 

storage is a particularly important source during dry periods when the major 

creeks are dry. 

Based on the two basins monitored, the volume of discrete recharge through the 

primary sinkhole drain(s) varies directly with the catchment area over the Edwards 

Aquifer.  Over the same reference period, large internal drainage basins show a similar or 

identical ratio of discrete recharge to rainfall.  Based on the findings of this study, the 

following methods (in addition to methods described in Section 3.21) can be used to 

determine if the estimated catchment area is reasonable: 

1) The simplest check is to measure the bowl volume and examine what 

catchment area is expected from the relation presented in Figure 3.7.  

2) Measure the water flow into a cave and corresponding rainfall after the soil is 

sufficiently saturated from previous rains. Does the flow to the cave exceed 

the aerial catchment of immediately preceding rainfall?  

3) In addition to the presence of a well-define solutional bowl, the presence of 

well defined channels and flood debris should provide an intuitive sense of 

the catchment area.  

Flow data from this study indicate that the discrete recharge component increases 

during periods of higher rainfall when the soils and macropores are already saturated, 

analogous to Hortonian runoff in a watershed. The total recharge occurring in internal 

drainage basins may or may not vary greatly under average conditions, although a longer 

period of measurement is required to examine shifts in recharge patterns because of 

varying rainfall patterns. It is also important to recognize that the pattern of rainfall and 

recharge in Central Texas is not evenly distributed, and properly functioning upland 

internal drainage basins play an important role in capturing flows from storms that 
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otherwise would run off or evaporate, thereby maximizing recharge to the aquifer.  Under 

dry soil conditions in both HQ Flat and Flint Ridge sinkhole basins, rain events of about 

5 cm and more did not produce runoff to the cave drains monitored. During dry periods it 

is the upland soils that infiltrate precipitation, such that even under relatively high 

precipitation events any runoff generated often does not reach the major creeks. In 

essence there is variability of Texas climate that directly influences where recharge 

occurs. 

The water balance revealed that 32% of the rainfall on the HQ Flat basin 

recharged the aquifer (Figure 3.8).  The measured recharge from runoff falls well within 

the ranges seen in karst areas worldwide (Table 3.1). Of the total recharge, only 17% 

entered HQ Flat Cave as discrete recharge. The remaining 83% of the recharge is 

“diffuse” infiltration through the soils and macropores. The degree of soil infiltration that 

is actually diffuse versus macropore infiltration requires deeper investigation. The finding 

that most recharge infiltrates through karst soils rather than though sinkhole drain on 

upland karst plains is consistent with similar results found by Gunn (1983) in New 

Zealand. Recharge measured at other sites across the Edwards outcrop area may vary 

from recharge measured here, although these results are the most direct measurement of 

upland recharge to date for the Barton Springs Segment. Based on the recharge values of 

32% recharge from rainfall derived from HQ Flat sinkhole, a gross estimate of 3.3% of 

the 176,000,000 m3 of cumulative discharge from Barton Springs over the 1,140 day 

average rainfall interval originated as recharge from known internal drainage sinkholes 

that constitute 10% of the Edwards outcrop area contributing to Barton Springs. 

Assuming gross upland Edwards outcrop areas outside of internal drainage basins have 

28% recharge from rainfall, then upland Edwards outcrop areas contributed 29% of 

Barton Springs flow. 

Chloride concentrations increase from rainwater, to runoff, to cave drips, to 

phreatic groundwater through evapotranspiration, residence time/rock-water interaction, 

and aquifer mixing. Minimal evaporation of surface runoff is expected during and shortly 

after sufficient rain events because the air is water saturated. Significant ET is improbable 
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below the epikarst zone so comparison of rainfall and runoff to cave drips is the most 

suitable comparison to eliminate most rock/water interaction and aquifer mixing 

influences. Chloride and sulfate concentrations increase with decreasing flow at Barton 

Springs because of increasing contribution from the Saline-Water Zone (Hauwert et al., 

2004b).  Because aquifer mixing results in elevated concentrations of chloride and sulfate 

in at least three of the springs, spring geochemistry is not included in the discussion of 

chloride concentrations as an approach for calculating recharge  

By sampling chloride in rainfall, runoff, and cave drips and comparing chloride 

calculations of evapotranspiration to eddy-covariance derived evapotranspiration, this 

study overcomes many potential limitations of the chloride method in the Barton Springs 

Segment. Only two rainfall samples were collected to characterize local rainfall quality 

although the standard deviation of the two samples was 0.01 for chloride concentrations. 

Austin rainfall chloride concentrations were 0.31 mg/l higher than the arithmetic mean of 

22 Tabor site runoff samples. Local rainfall quality is expected to decrease from the Gulf 

of Mexico inland toward west Texas as coastal marine salinity is depleted (Bennett, 2009, 

personal communication; NADP, 2009). The chloride concentrations in two Austin 

rainfall samples (arithmetic mean = 1.21 mg/l) were higher than Attwater (arithmetic 

mean = 0.64 mg/l) and Sonora (arithmetic mean = 0.21 mg/l), and it is unknown why 

local chloride concentrations do not lie within this range. Consequently, measurement of 

chloride in rainfall likely is the largest potential error for calculating recharge using the 

chloride balance method in this study.  A range from 26 to 49% recharge from rainfall, 

take into account the range of chloride concentrations from Attwater, Tabor runoff, and 

two local rainfall samples is calculated for the Tabor site. The range of Sonora rainfall 

chloride concentrations was exclusive of the range of any locally measured rainfall or 

runoff concentrations (n=24) so Sonora chloride concentrations are not representative of 

local rainfall chloride concentrations and were not used for recharge calculation (Figure 

3.13).  

A comparison of chloride in Austin-area rainfall, Tabor tract runoff to Flint 

Ridge Cave, and cave drips on internal drainage areas of the Tabor research site suggests 

that 51 to 74% of rainfall becomes ET while the remaining 26% to 49% of rainfall 
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becomes recharge. With an understanding of the limits in the chloride mass balance, the 

test serves as a separate measurement of recharge to supplement the water-balance 

method.  The estimate of 32% recharge from water balance in the J17 HQ Flat sinkhole 

basin is encompassed between the 26% to 49% recharge estimated from chloride in 

Tabor cave drips. Variation in recharge across the Barton Springs Segment from site to 

site is expected.  

3.5 CONCLUSIONS 
Large catchment internal drainage basins characteristically have concave upward, 

solution-formed bowls with a bowl volume proportional to the size of the catchment area, 

its recharge significance, and karst maturity.  The bowl volume provides quantitative 

measurement of surface solution processes associated with a karst feature and, therefore, 

is an excellent indicator of its recharge significance. Within the Barton Springs Segment 

the catchment area of a natural, internal drainage solution sinkhole is 300 times its bowl 

volume, with an R2 of 0.9. Sinkhole bowl volumes are suppressed relative to their 

catchment areas where:  

 

(1) their development is in less soluble hydrostratigraphic units, such as 

the RDM, Grainstone, and Basal Nodular Members; 

(2) the sinkhole is filled; 

(3) the sinkhole type is not an internal drainage basin, but another type 

such as a creek swallet; or 

(4) multiple solution sinkholes are present within a catchment area.  

Internal drainage sinkhole catchment areas are suppressed relative to their bowl 

volume if: 

(1) the catchment area has been anthropogenically dissected; 

(2)  the sinkhole has been artificially excavated, such as an artificial internal 

drainage basin; or 

(3)  the sinkhole was largely shaped by collapse rather than dissolution. 
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Quantification of bowl volumes in karst assessments can help identify significant 

features by quantifying the catchment area for internal drainage basins. In nearly all 

cases, a large bowl volume defines the presence of an internal or at least partial internal 

drainage basin.  In cases where sinkholes discovered in topographically high areas with 

little catchment nevertheless appear to have large bowl volumes, a closer inspection may 

reveal these are actually collapsed sinkholes and that the apparent bowl volume is 

actually a collapsed cave passage.  

Collapsed sinkholes are characterized by convex upward cross section and 

relatively small catchment areas. Nevertheless, collapsed sinkholes are equally likely as 

solution sinkholes to have a strong hydraulic connection with the aquifer. A number of 

collapsed sinkholes (such as Midnight Cave, Salamander Mountain Cave, and Tabor Bat 

Cave) are observed as convergent points for shallow epikarst flow that exceeds direct 

flow to their entrance, and this epikarst flow uses the cave to descend towards the water 

table. Their recharge significance increases from natural and anthropogenic diversion of 

surface water into the collapsed sinkholes. Also, collapsed sinkholes may provide stable 

habitat sites for cave species, in part because they are less prone to flooding.  

Open internal drainage basins, ponded internal drainage basins, and manmade 

depressions that intercept surface drainages make up at least 8%, 2%, and 0.4% 

respectively of the Edwards outcrop area of the Barton Springs Segment. These areas 

rarely, if ever, contribute to local downstream drainages.  The results of a 1.4 year water 

balance of two large open internal drainage basins under higher than average rainfall 

conditions indicated that about 68% of the rainfall evaporates, about 6% enters the cave 

as discrete recharge, and about 26% diffusely recharges the aquifer through the soil or 

other lesser recharge features.  For short periods under wet conditions, over 40% of the 

precipitation from a single rain event can enter HQ Flat Cave as discrete recharge.  The 

portion of discrete recharge from rainfall increases over intervals of higher rainfall as the 

soils are relatively saturated and high humidity reduces the relative evaporative losses. 

The proportion of discrete recharge into the cave draining the base of large internal 

drainage sinkhole basins is 10% of rainfall when rainfall is 30% above average and 5% of 

rainfall when rainfall intervals are 20% above normal. Under average rainfall conditions 
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the discrete portion of recharge declines to 3% of rainfall.  An estimated 32% of its 

rainfall recharged the HQ Flat sinkhole basin over the 505 day test interval, and 

preliminary results suggest that internal drainage basins are relatively efficient recharge 

areas.   

Variation in upland recharge can be expected across the Edwards outcrop area. A 

better understanding of upland recharge requires aquifer-wide examination of upland 

recharge and additional site scale measurements over a longer time and in different 

locations.  A chloride concentration comparison between Austin rainfall, runoff on the 

Tabor site, and cave drips on the Tabor site suggests that about a quarter to half of the 

rainfall recharges over that tract. The 51% to 74% range of evapotranspiration from 

rainfall measured with chloride concentrations on Tabor site compares with the 68% of 

rainfall measured for evapotranspiration at the HQ Flat site flux tower are both much 

lower than the 85% previously estimated for the Barton Springs Segment. The scale of 

the examination was insufficient to characterize the degree of heterogeneity of the 

infiltration through upland soils. 

The measurements collected in this study are the first estimates of total recharge 

at a site scale within the Barton Springs Segment and indicate that most upland recharge 

occurs on the slopes rather than at discrete identifiable caves.  From the water balance, 

the diffuse infiltration measured on slopes of internal drainage basins, or 28% of rainfall, 

maybe most representative for overall upland recharge outside of internal drainage 

basins. Outside of internal drainage basins, the 3% of rainfall measured as discrete 

recharge at a site scale may represent a measure of runoff entering the major creeks at 

larger scales.  

When comparing recharge measurements from karst areas across the world, 20% 

to 60% of rainfall would be expected to recharge karst aquifers that varies with karst 

maturity, allogenic recharge from upstream areas, evapotranspiration, and other factors. 

The karst maturity of the Barton Springs Segment is higher than the Trinity Aquifer and 

should exceed the estimated 7% of Trinity Aquifer recharge from rainfall. Furthermore, 

the 1980s water balance overestimated creek recharge for the aquifer-wide water balance 

(Slade et al., 1986) because the source area had not yet been defined with tracing 
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(Hauwert et al., 1997). A correction to the original water balance results for less recharge 

from Barton Creek leaves 32 to 36% of total recharge to Barton Springs unaccounted for 

by the recharge from the six major creek channels and could come from upland recharge.  

Based on recharge measurements in HQ Flat sinkhole and extrapolating the results across 

the Edwards outcrop area, 29% of Barton Springs flow originates from upland area 

recharge. Hence, the recharge of specific internal drainage basins as well as the 

intervening upland areas is greater than previously reported.   



Table 3.1. Recharge estimates from various karst aquifers.
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% Recharge/ % Upland Recharge/ Location Aquifer , Basin, Source

 Direct Precip. % Major Creek Recharge  or Region  

28-32% Barton Springs Seg. Edwards presented here

0.89%* 15% / 85% Barton Springs Seg. Edwards Slade et al 1984, Woodruff, 1984

>10% San Antonio Seg. Edwards Huang and Wilcox, 2005 

56% / 44% Bexar Cty TX Edwards Ockerman, 2002

1.5%  Central TX Trinity Muller and Price, 1979

4% Central TX Trinity Ashworth, 1983

11% Central TX Trinity Kuniansky, 1989

6.7% Central TX Trinity Bluntzer, 1992

7% Central TX Trinity Mace et al., 2000

30% Uvalde Cty TX Trinity Dugas, 1998

54% 100%/0% Mendip Hills, England Carboniferous Limestone Atkinson, 1977

33% Crimea, Ukraine Dublyanskii et  al.,  1984 

15-20% Barbados Uplands Jones et al., 2000

25-30% Barbados Below 2nd Clif f Jones et al., 2000

60% Guam Mink  and Vacher, 1997

67% Guam Jockson et al., 2002

14-19.5% Morocco Plio-Plest. Bolelli, 1951

23-42% Tunis ia Tixeront et al., 1951

36-91% Tunis ia Eocene Ls Schoeller, 1955

10-45% Israel W. Galilee Goldschmidt,  1960

53% Israel Na'aman Spr Mere, 1958

41% Syria Damascus Burdon, 1960

45% Syria Ghab Voute, 1961

52% Greece Lilaia Aronis et al, 1961

51% Greece Parnassos-Ghiona Burdon and Papakis, 1961

12-124% Hungary Tettye Kessler,  1957

*upland direct recharge only, total recharge estm. to be 5.95% which includes recharge of Contributing Zone f lows



Table 3.2. Estimated recharge contributions from previous water balances.
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Source     Percent Total     Percent Total             Max. Recharge      Percent Total
   Creek Recharge Aquifer Recharge           Rate   Aquifer Recharge

A* B* A* B* A* B* C*low C*high

(%) (%) (%) (%) (m
3
/s) (m

3
/s) (%) (%)

Barton 28 31 24 26 0.85-2.0 7.1 2 12
Williamson 6 3 5 3 0.4 0.4 5 5
Slaughter 12 6 10 5 1.5 1.5 10 10

Bear 10 7 9 6 0.9 0.9 9 9
Little Bear 10 7 9 6 0.8 0.9 9 9
Onion 34 46 29 39 3.4 3.4 29 29

Intervening Areas  15 15 36 27

      
A* - source Slade et. al., 1986

B* - source Barrett et. al., 1996
C* - Slade et al. (1986) results readjusted based on Barton Creek tracing results and the assumption 
       that 10% to 50% of the original 24% Barton Creek contribution discharges from Barton Springs.



 Interval Interval Water Potential rainfall/avg
Component Start End Duration                Amount/ Unit Area Volume Error

(days) (cm) (% of rainfall) (m
3
) (% of total) (%)

HQ Flat Microbasin 4/2/2004 8/20/2005 505   121%
Rainfall 160 100.0% 297,850 5%

Evapotranspiration 109 68.1% 202,910 3.4%
Soil Moisture Storage 0 0.0% 0 0.4%
Discrete Recharge 8.8 5.5% 16,300  +0.1 to -0.8%

Diffuse Recharge 42 26.4% 78,640 (+11%)

Total Recharge 51 31.9% 94,940 5%

Flint Ridge Microbasin 4/2/2004 8/20/2005 505   
Rainfall 165 100.0% 237,587 5%
Discrete Recharge 6.7 4.0% 18,600  +0.1 to -0.6%

HQ Flat Microbasin 7/16/2003 8/29/2006 1,140 100%
Rainfall 261 100.0% 485,603 5%

HQ Flat Discrete Recharge 8.8 3.4% 16,322  +0.1 to -0.5%

Flint Ridge Microbasin 7/16/2003 8/29/2006 1,140

Flint Ridge Discrete Recharge 6.8 2.6% 18,890  +0.1 to -0.4%

Barton Springs Discharge 7/16/2003 8/29/2006 1,140 176,505,749 5%

HQ Flat Microbasin 7/1/2002 5/26/2003 329 150%
Rainfall 70 100.0% 5%
HQ Flat Discrete Recharge 7.2 10.3% 13402  +0.2 to -1.5%

 

HQ Flat Catchment Area 186,156 m
2

Flint Ridge Catchment Area 279,200 m
2
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Table 3.3.Results of internal drainage basin water balance



Table 3.4. Water-quality summary for recharge calculation. 
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* Note two runoff outlier values were excluded.

Number 

Water Type of  Arithmetic Mean Based on Based on Based on

Samples Cl SO4 SO4/Cl Cl SO4 SO4/Cl Austin Rain Cl Runoff Cl Attwater Cl

Rainfall (Austin Area) 2 1.21 2.09 1.72 0.01 0.02 0.04  

Rainfall (Sonora) 22 0.21 1.04 5.08 0.05 0.18 1.12  
Rainfall (Attwater) 24 0.64 1.03 1.68 0.17 0.19 0.37  
Runoff (Tabor Tract) 22 0.95 1.06 1.23 0.33 0.29 0.42  

Barker Ranch Cave Drip (5 m) 38 2.46 5.12 2.12 0.54 0.70 0.19 49% 39% 26%

Flint Ridge Drip Pit (47 m) 3 6.34 18.60 0.34 0.38 0.98 0.01 19% 15% 10%
Upper Barton Springs 90 16.08 23.82 1.50 5.05 7.46 0.29 8% 6% 4%

Main Barton Springs 294 27.57 30.56 1.15 1.50 5.52 0.22 4% 3% 2%
Eliza Springs 101 28.06 31.8 1.18 12.8 12.5 0.19 4% 3% 2%
Old Mill Springs 146 50.0 47 0.95 13.6 8.9 0.13 2% 2% 1%

Standard Deviation

Ratio Clrain/Clcave drip



Figure 3.1. Sinkhole dimensions. Morphological characteristics were used to 
distinguish solution and collapse sinkholes. The rim area and C dimension were 
used to calculate the bowl (see glossary). Modified from Hauwert et al., 2005.
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Figure 3.2. Research sites. The HQ Flat catchment is located on the J17 site. 
The Flint Ridge catchment is located on the Tabor site. Both sites are located 
near the center of the Barton Springs Segment.
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0.6 m surface contour

Figure 3.3. HQ Flat catchment. A paved private road crosses the north side of 
the catchment. A depressed area on the north side of the catchment must fill 
with runoff before additional runoff is diverted along a channel to HQ Flat Cave. 
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Figure 3.4. Flint Ridge catchment.
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Figure 3.5. Sinkhole bowl volumes and surface hydrostratigraphic unit.
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Figure 3.6. Anthropogenic influences on sinkholes.
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Figure 3.7. Sinkhole bowl volume and catchment (filtered).
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Figure 3.8. Water balance summary for HQ Flat basin: 505-day interval. This interval 
from April 2, 2004 to August 20, 2005 had 21% higher than average precipitation. The 
starting and ending soil moistures measured 20%+2%.
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Figure 3.9. Soil thickness across HQ Flat catchment.
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Figure 3.10. Soil moisture variation in trenches across HQ Flat catchment.
All samples were collected between October 2, 2006 to October 4, 2006. Canopy  
samples were collected within tree covered areas, all others are open grassland. 
"B" samples are duplicate samples from same numbered trench at different 
location. Based on the soil moisture readings the net soil moisture gradient is 
upward (ET losses) at that time. 
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Figure 3.11. Volumetric soil moisture recession after rains.
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Figure 3.12. Comparison of chloride concentration and sulfate/chloride ratio.   
Chloride increases from rainwater and runoff sites to deeper cave drips and 
springs. Large evapotranspiration is not anticipated between cave drips and the 
water table and measured increases in chloride are attributed to rock interaction. 
Main, Eliza, and Old Mill are in hydraulic communication with the Saline-Water 
Zone, while Upper Barton Springs is not. The arrow indicates the shift from 
Austin rainfall quality to Barker Ranch Cave drip quality. This comparison 
suggests a recharge of 49% from rainfall based on assumptions including that 
the chloride enrichment results completely from evapotranspiration and that the 
rainfall quality is representative.
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Figure 3.13. Chloride and sulfate concentration comparison. Two Austin
area rainfall quality samples suggest that 49% recharge from rainfall occurs 
to the 5-m deep Barker Ranch Cave Drip. The same recharge calculation 
using the arithmetic average chloride concentrations from the Attwater 
National Atmospheric Deposition site is 26% of rainfall.
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Figure 3.14. Variation in ET with precipitation.
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Chapter 4. Groundwater Flow in the Edwards Aquifer 

4.1 INTRODUCTION 
This chapter examines groundwater flow through the Barton Springs Segment. An 

overview of prior investigations is presented. 

4.1.1. Objectives and Scope 
The objectives of this study are to characterize groundwater flow within the 

Barton Springs Segment.  Field work, research, and analysis for this dissertation began in 

Fall 2000, although it builds on investigation that commenced in 1993. The groundwater 

system of the Barton Springs Segment, including discrete flow paths, groundwater basins, 

and transport characteristics, is examined with groundwater tracing, geochemistry, 

speleology, pump tests, and potentiometric-surface mapping. Groundwater tracing results 

between 2001 and 2005 are considered in combination with earlier tracing results. The 

flow rate of Cold Springs is estimated using creek flow losses in its traced source area. 

The hydrogeologic properties of the Barton Springs Segment, transmissivity, advection, 

dispersion, diffusion, and retardation, are quantified using tracer breakthroughs. Water-

level data from wells and caves are used to interpret major flow path locations.  

Geochemical data are integrated to examine the localization of specific water-quality 

constituents along flow paths and to characterize drainage from the matrix. Aquifer test 

data are analyzed to calculate transmissivity and deviations in drawdown response to 

examine traced groundwater flow paths in the radius of influence. 

4.1.2. Groundwater Flow in Karst Aquifers 
Karst aquifers such as the Barton Springs Segment can be described as dual- or 

triple-porosity systems, because groundwater flow is influenced by matrix, fracture, and 

conduit flow (Ford and Williams, 1992; ASTM, 1995, Halihan et al., 2000, Kiraly, 2002). 

Groundwater flow in karst aquifers differs from other aquifers in that flow commonly 

converges into a few well-defined flow paths (Katzer, 1909; Martel, 1910). Convergent 

groundwater flow can also occur in non-soluble pseudokarst terranes, such as lava tubes 
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in basalt (White, 1988) and man-made trenches (Garcia-Fresca and Sharp, 2005). Most of 

the storage but little of the flow is thought to occur in the matrix (Worthington, 1999). 

Quinlan (1989) described common methods for characterizing karst aquifers, 

including groundwater tracing, potentiometric-surface mapping, cave-stream mapping, 

and water-quality sampling. Worthington (1999) stressed that information from wells 

alone is not sufficient for characterizing karst aquifers. He listed several applications for 

well investigations in these areas:  

(1) wells can serve as monitor/injection sites for tracers;  

(2) aquifer test analyses (but with the understanding that the main channels of 

flow likely are not represented);  

(3) variable rate aquifer tests, which show a nonlinear specific capacity if there 

are major groundwater flow conduit pathways within the cone of depression;  

(4) packer tests can evaluate the fractures and matrix;  

(5) the symmetry of the cone of depression will be irregular where well-connected 

conduit pathways are nearby;  

(6) continuous water-level monitoring can characterize hydraulic connection of 

the system;  

(7) spatial water-level measurements can indicate potentiometric troughs (or 

mounds) that indicate major conduit systems and changes in the hydraulic gradient in the 

downgradient direction can suggest (equivalent) porous media flow where the gradient 

increases or a karst system where the gradient decreases;  

(8) frequent sampling can note variations in solute concentrations that indicate 

connections to major conduit networks and water-quality variations after rain events; and  

(9) environmental isotopes may show younger water below older water in the 

major conduit pathways. 

4.1.3. Sources of Subsurface Recharge to the Barton Springs Segment 
Water leakage is defined in a hydrogeological sense as “the flux of fluid into or 

out of an aquifer or reservoir” that “commonly refers to cross formational flow” (Sharp, 

1999). The presence of leakage from different water sources to the Barton Springs 
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Segment reflects discontinuities of the aquifer framework. Possible sources of subsurface 

leakage into the Edwards Aquifer are from the Saline-Water Zone and from the Trinity 

Aquifer. 

4.1.3.1. Saline-Water Zone 
The Saline-Water Line marks a relatively abrupt increase in chemical constituents 

directly east of the Barton Springs Segment (Clement and Sharp, 1988), approximately 

following Interstate 35 and Congress Avenue toward Barton Springs (Flores, 1990). The 

Saline-Water Zone east of the Barton Springs Segment is enriched in sodium, chloride, 

sulfate, and strontium (Clement and Sharp, 1988). The higher salinity in this area may be 

the result of more intense faulting at the San Marcos Arch, creating offsets that could 

strongly restrict the Saline-Water Zone (Clement and Sharp, 1988). Maclay and Small 

(1984) suggested that faults that offset 50% or more of the Edwards Aquifer can restrict 

lateral flow sufficiently to influence the position of the Saline-Water Zone.  Offsets of 

this magnitude are observed near the Saline-Water Zone in cross sections along Barton 

Creek (Figure 2.3). Abbott (1973) explained that the Saline-Water Zone was groundwater 

from the Edwards Aquifer that filled a relatively static field outside of the well-developed 

flow paths to Barton Springs within the freshwater portion. The Saline-Water Line is 

irregular and does not follow any fault trend for any significant distance (Abbott, 1973). 

Land and Prezbindowski (1985) ruled out a connate origin for the Saline-Water Zone. 

They found no evidence of selective loss or gain of chemical species, or membrane 

filtration, that would be expected from upward leakage through shale layers, and the 

waters were depleted rather than enriched in deuterium relative to Standard Mean Ocean 

Water (SMOW). The downdip undersaturation with respect to dolomite, the enrichment 

in chloride, and high dissolved solids relative to other limestone brines led them to infer 

that the brines originated from updip movement of deeply buried and pressurized Jurassic 

evaporate-derived brines that were heavily diluted with downdip-moving meteoric water 

(Edwards Group brines). These Edwards Group brines could be Luling Fault Zone or 

Karnes Trough brines moving updip. 
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Rightmire et al. (1974; Kehew, 2001, p. 275-277) characterized water quality in 

the Edwards Aquifer as having low and gradually increasing sulfate concentrations and 

sulfate isotope ratio, and having essentially no sulfide. Rightmire et al. (1974) infer that 

the sulfates in the Edwards Aquifer probably originated from gypsum dissolution.  A 

distinct high sulfate and sulfate-isotope-ratio sulfide-bearing water type was interpreted 

to be influenced by the migration of brines from a down-dip source (Rightmire et al., 

1974).  

Oetting (1995) compared the chemistry of the Saline-Water Zone to fresh water of 

the Barton Springs Segment and suggested its source to be a mixing of Edwards Group 

brines with highly evolved meteoric water with long residence time.  Some Saline-Water 

Zone samples had higher Na/Cl than mixing models indicate and several possible sources 

were suggested: (1) dissolution of halite deposits, (2) mixing with waters from underlying 

units, or (3) Na-Cl exchange occurred across clay-rich layers. All of the chloride 

measured could originate from Edwards Group brine sources hypothesized by Land and 

Prezbindowski (1985; Oetting et al., 1996). An average mixture of about 30% underlying 

Glen Rose saline groundwater, 69% evolved meteoric water, and 1% Edwards Group 

brines provides a close match for the Saline-Water Zone quality adjacent to the Barton 

Springs Segment.  

There is interaction between the Barton Springs Segment and the Saline-Water 

Zone.  Senger (1983) estimated a roughly 5% to 10% contribution when Barton Springs 

flows declined as low as 20 ft3/s. Hauwert et al. (2004b) estimated a maximum flow 

contribution of 3% at Old Mill Springs and 0.5% at Main and Eliza Springs combined 

from the Saline-Water Zone, when Barton Spring flows declined to 17 ft3/s.  Although 

both Senger (1983) and Hauwert et al. (2004b) referred to chloride concentrations from 

well 58-50-301 for the Saline-Water Zone end member, Senger (1983) used a 332 mg/l 

value measured in 1949 under moderate-flow conditions while Hauwert et al. (2004b) 

used 3,640 mg/l chloride concentrations measured in 1948 under low-flow conditions, 

hence the difference in their estimates.  Garner (2005) estimated that Old Mill Spring 

received 4% to 9% of its water from the Saline-Water Zone using an unknown end 

member for comparison, but presumably the same value Senger (1983) used from well 
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58-50-301 under moderate-flow conditions.  Johns (2006) extrapolated the Saline-Water 

Zone contribution to Main and Old Mill Springs would increase to 1 - 1.25% and 3 - 

3.25%, respectively if Barton Springs declined to flows of 0.142 m3/s (5 ft3/s).  

Although water-quality data from the Saline-Water Zone are limited, the lower 

contributions of about 3% or less, based on well water quality from 58-50-301 during 

low-flow conditions, are more representative of the Saline-Water Zone component of Old 

Mill Springs. Because waters from the Saline-Water Zone are nonpotable, few wells are 

located near the Saline-Water Line.  Even fewer wells are completely inside the Saline-

Water Zone and some of these wells near the boundary contain a mixture of fresh and 

saline waters under higher flow conditions. Therefore, the Saline-Water Zone quality 

may be best represented in wells near the Saline-Water Line during low-flow conditions 

when fresh Edwards Aquifer flows are low.   

Garner (2005) inferred from geochemical analysis that the Saline-Water Zone 

persisted at lower levels of the Barton Springs Segment and extended in some places far 

into the Sunset Valley groundwater basin (well 58-50-406) and farther west into the Cold 

Springs groundwater basin (well 58-50-211). However, these wells lie in urban areas and 

are elevated in nitrate (arithmetic mean of 5.10 and 1.83 mg/l, respectively) so the 

elevated chloride and sulfate are interpreted here to originate from anthropogenic sources 

(COA, 1997) and not from the intrusion of the Saline-Water Zone through complex 

multi-level crossing of groundwater flow paths. Tracers injected in a well near the 

western edge of the Edwards outcrop area appeared in well 58-50-211 (Section 4.2; 

Figure 4.1), demonstrating that its source area is from the south rather than the east. 

During high-flow conditions, the freshwater portion of the Edwards Aquifer 

intrudes into the Saline-Water Zone (Garza, 1962). During drought periods, contribution 

from the Saline Water Zone to Barton Springs is reflected by increases in mineral 

constituents such as sodium, chloride, strontium, and fluoride (Senger, 1983; Senger and 

Kreitler, 1984; Hauwert and Vickers, 1994; COA, 1997).  
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4.1.3.2. Trinity Leakage 
The flow of Trinity Aquifer waters to the Edwards Aquifer was originally 

hypothesized by Hill and Vaughan (1898) based upon sites on the western side of the 

Edwards outcrop area where faults bring the Middle and Lower Trinity Aquifer into 

direct contact with the Edwards Group.  Trinity Aquifer contributions to the Edwards 

Aquifer potentially can occur laterally across faults that have sufficient displacement to 

place permeable beds in the Trinity Aquifer next to permeable portions of the Edwards 

Aquifer (Senger and Kreitler, 1984). Slade et al. (1986) noted that 13 of 140 tested wells 

across the Barton Springs Segment showed chemical signature of Trinity Aquifer 

leakage, and that each of the 13 wells was near a fault where leakage may localize. 

Trinity Aquifer water can be geochemically distinguished by differences in strontium, 

sulfate, fluoride, chloride, and sodium (Brune and Duffin, 1983, p. 94-97; Senger and 

Kreitler, 1984; Slade et al., 1986, p. 61). Some areas of the Edwards Aquifer, including 

Barton Springs, are enriched in constituents that are characteristic of the Trinity Aquifer 

(Senger and Kreitler, 1984; Slade et al., 1986; Hauwert and Vickers, 1994; Oetting, 1995; 

Hauwert et al., 2004b; Garner, 2005). In the Northern Segment, the Saline-Water Zone 

shows a close chemical similarity to the lower Trinity Aquifer (Clement and Sharp, 

1988). 

Water-level maps suggest that Trinity leakage to the Barton Springs Segment 

occurs, although sufficient water-level data is lacking to show where this leakage occurs. 

To simulate potentiometric heads in the middle Trinity Aquifer, a considerable amount of 

simulated leakage to the Edwards Aquifer is required (Mace et al., 2000b). In areas on the 

western side of the Edwards outcrop area, the Edwards Aquifer potentiometric heads are 

higher than Trinity Aquifer water levels under all flow conditions in a few locations 

where direct comparisons are possible, so that the potential exists for downward leakage 

into the Trinity Aquifer rather than vice versa (Smith et al., 2007). Farther to the east, 

Trinity Aquifer data are not available on the eastern side of the outcrop area, eastern 

drainage, or artesian areas to determine whether Trinity Aquifer heads are indeed higher 

there.   
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The fact that Trinity Aquifer waters have one or two orders of magnitude less 

total dissolved solids than the Saline-Water Zone suggests that Trinity waters circulate 

more rapidly with less rock-water interaction. This circulation likely is created by Trinity 

leakage to the Edwards Aquifer because there are no other significant natural discharge 

points (east of the contributing area where the top of the Trinity Aquifer lies below the 

base level of the local rivers and creeks). Base flow generated within the contributing 

area originates from Trinity Aquifer springflow. This Trinity Aquifer discharge recharges 

the Barton Springs Segment though the major creeks and possibly through the Blanco 

River. 

Tracing and cave mapping have shown direct connection between the Edwards 

and Trinity Aquifers in some areas. Major cave development can be observed in the 

Walnut/Basal Nodular Member both north and south of the Barton Springs Segment. This 

potentially could allow vertical leakage in some areas between the Edwards and Trinity 

Aquifers (Kastning, 1986; Russell, 1993; Veni, 1999). In fact, cave streams developed 

within the Walnut Formation in North Austin have been traced to discharge from a Glen 

Rose spring (Hauwert and Warton, 1997). Schindel (2006, personal communication) 

reported injecting dye on the Upper Glen Rose Formation at Camp Bullis and recovering 

the dye miles away in an Edwards Aquifer well.  Klimchouk (2004) suggests that 

hypogene leakage from underlying aquifers across assumed aquitards are common in 

karst aquifers. 

4.2. Tracing of Groundwater Flow System 
Tracing reveals details of the groundwater flow system that cannot be obtained by 

other methods. Tracing studies require an accurate conceptual model of possible 

alternative recharge and discharge conditions; non-detection of an injected tracer more 

often than not reflects a poor understanding of the system (Smart, 1988; Field, 2002a). If 

wells downgradient of the injection site are available and monitored, then tracers can be 

recovered in them (Quinlan, 1989). If all potential discharge sites from the injection site 

are monitored and sampled at sufficient frequency at the time the tracer arrives for the 

duration of its discharge, then the breakthrough can be measured (Fields, 2002a). 
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Loading, or total mass of discharged tracer, can be calculated if the discharge rates and 

concentrations of tracer discharge are known accurately. 

Interpretation of tracing results transcend simple positive or negative recovery at a 

monitored site. Differences in concentrations and multiple arrival peaks can reveal details 

about flow paths and water sources. Atkinson et al. (1973) used multiple peaks on 

breakthrough curves to infer divergent flow paths with varying travel times. Multiple 

peaks also can result from release of stored tracer that is flushed by rain events. 

4.2.1. Groundwater Tracing Methodology 
The methodology for groundwater tracing in the Barton Springs Segment from 

2000 to 2005 was essentially the same as methodology used from 1996 to 2000 (Hauwert 

et al., 2004a). Groundwater tracing involves the introduction of non-toxic materials 

(tracers) into surface drainages or the subsurface (injection points ) and monitoring the 

movement of these materials at wells and springs (receptor sites ).  The general 

methodology of tracing and an evaluation of various tracers are described by Aley (2002) 

and Smart and Laidlaw (1977).  The procedures and criteria of the laboratory analysis for 

the tracer were described in detail by Aley (2000a).    

The tracers used in this study are traditional, well-documented organic dyes, 

acquired from Ozark Underground Laboratory (OUL) in Protem, Missouri.   The tracers 

used in this study are eosine, fluorescein, rhodamine WT, sulforhodamine B, and 

pyranine; these names are used throughout the report.  Dye quantities identified in the 

report represent the dye mixture used. 

Eosine is Acid Red 87 and its Color Index Number is 45380.  It is also called 

eosin. The eosine mixtures used contained approximately 75% dye equivalent and 25% 

diluent. The dye mixture was purchased as a powder. 

Fluorescein (Fl) is Acid Yellow 73 and its Color Index Number is 45350.  It is 

also known as sodium fluorescein and uranine.  The fluorescein mixtures used contained 

approximately 75% dye equivalent and 25% diluent.  The dye mixture was purchased as 

a powder. 
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Rhodamine WT (RWT) is Acid Red 388 and it does not have an assigned Color 

Index Number.  The rhodamine WT mixtures used contained approximately 20% dye 

equivalent and 80% diluent.  The dye mixture was purchased as a liquid. 

Sulforhodamine B (SRB) is Acid Red 52 and its Color Index Number is 45100.  

The sulforhodamine B mixture used contained approximately 75% dye equivalent and 

25% diluent.  The dye mixture was purchased as a powder. 

Pyranine was purchased as Drug and Cosmetic Green 8.  Its Color Index Number 

is 59040.  The pyranine mixture used contained 77% dye equivalent and 23% diluent.  

The dye mixture was purchased as a powder. 

Tracer monitoring at Barton Springs using charcoal receptors has been nearly 

continuous since 2000. Once dye concentrations are sufficiently low or nondetectable, a 

new tracing phase may commence once funding is available and specific objectives are 

identified.  Tracing phases require at least 3 months of monitoring and are separated by 6 

months to 3 years. The tracers selected are not necessarily rare substances but may be 

present in some quantity in stormwater runoff, automotive coolants, sewage, hydraulic 

fluids, cooling tower emissions, fluorescent stationary, and other sources (Aley, 2002).   

To monitor the movement of the tracers, charcoal receptors were placed in 

springs, creek and river sites, and accessible wells.  Monitored wells with active pumps 

were fitted with receptors at a point prior to any water treatment systems. These active 

well sites were either allowed to flow continuously at a low rate or pumped for a period 

of time each day. For active well systems, a small seep or drip of flow from a periodically 

pumping well was diverted through a standard garden hose and into specially constructed 

polyvinyl chloride (pvc) holders, designed by OUL, where charcoal receptors were 

placed.  The receptor holders were often placed in pairs to allow for duplicate samples, 

although it was difficult to insure both receptor holders received the same quantity of 

flow.  Open wells without pumps were monitored by lowering a receptor to a depth 

where flow was believed to enter the well bore.  The optimal monitoring depths within 

these passive well sites  were estimated from downhole camera observations of void 

intervals within the well or from available caliper logs of the well bore.  Any springs that 

represented likely discharge points for the injection sites were monitored. Springs might 
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exist within the channel of the Colorado River that are not obvious, so receptors were 

placed in the Colorado River at numerous locations during some phases.  Creeks were 

monitored downstream of the injection point where necessary to determine if creek flow 

subsequent to injection could move the tracers along surface flow routes to other recharge 

points.  As the study progressed, monitoring sites were added and dropped to better fit 

monitoring needs and accessibility of that phase.  Continued and regular access was one 

of the most limiting factors to selecting or sustaining a monitoring site.   

Receptor sites were monitored using a combination of adsorbent activated 

charcoal packets (receptors) and grab samples.  Receptor sites were monitored for 2 

weeks prior to tracer injection to detect any background presence of tracers.  Several 

receptors were placed at each receptor site and collected at intervals ranging from several 

hours to 3 weeks. Short-term receptors, those collected over hours or days, were often 

overlapped by a long-term receptor.  The long-term receptor was analyzed initially and if 

a tracer was detected the short-term receptors were analyzed for that interval.  This 

procedure reduced analytical costs and allowed refinement of the arrival times for tracers.  

Breakthrough curves were prepared from the laboratory results, from which the initial 

travel time, duration, and peak concentrations were calculated.  To allow comparison of 

results from receptors placed over varying periods of time, the cumulative concentration 

of the results were divided by the number of days in that time period.  Because of this 

mathematical adjustment of the cumulative concentrations, some receptors may show an 

average daily concentration below the cumulative concentration detection limit. 

Water samples, known as grab samples, were collected in plastic bottles at the 

time the receptors were replaced and provided information on the instantaneous tracer 

concentrations in the water.  After 2000, ISCO model 3230 automatic samplers were 

deployed at Eliza Springs, and occasionally at Main and Old Mill Springs, so that grab 

samples could be collected between 4-hour and 1-day intervals for limited periods 

following injections. Because the concentration of tracers measured in the charcoal 

receptors is cumulative, higher concentrations of tracer can be expected to be present in 

an adsorbent receptor than are measured in instantaneous grab water samples from the 

same site.  Consequently, the tracers are more easily detected in receptors than in grab 
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samples. Grab samples also served to verify positive detections measured on 

corresponding receptors.  

The Rules and Bylaws of the BS/EACD requires the submittal of an operations 

plan and subsequent authorization from the BS/EACD prior to any groundwater trace in 

the Barton Springs Segment of the Edwards Aquifer where materials are introduced into 

surface or groundwaters (BS/EACD, 1997).  This rule was enacted so the BS/EACD 

could track tracer studies within the Barton Springs Segment, avoid interference between 

groundwater traces, and evaluate the proposed injection materials for possible detrimental 

affects.  Access for all sites was obtained in advance from the site owner or authorized 

representatives.  Identified well users in close proximity to the injection points were 

notified in advance of the test to prepare for possible visible levels of the tracers.   

The quality control and assurance procedures utilized in this study incorporated 

trip blanks, field duplicates, laboratory-spiked standards, and the testing of a portion of 

the sample containers for possible contaminants.   Trip blanks, consisting of wetted 

charcoal packets handled by field personnel during the course of sampling, were 

submitted to the lab from each team recovering receptors in order to test periodically for 

cross contamination between sites or contamination from other materials the teams were 

exposed to.  Over 12 percent of the total charcoal samples submitted to the OUL for 

analysis included a field duplicate sample in order to allow two independent 

measurements of the same sample for comparison.  Between 1996 to 2000, a portion of 

the duplicates and blanks submitted to the laboratory were blind, so that the lab did not 

know their purpose.  OUL tested standard solutions of the tracers daily as described in its 

procedures and quality control document. Laboratory blank samples were analyzed on 

each twentieth sample.  OUL tested one percent (1%) of the unused sample containers to 

assure that tracer contaminants were not present.  Grab samples were collected to verify 

the results of the receptors, and to measure the concentration of tracers at a single point in 

time.   

Primary or secondary flow paths were mapped to reflect groundwater discharge 

rates under average flow conditions. Figure 4.1 shows an interpretation of the primary 

and secondary groundwater flow routes active during moderate and high-flow conditions. 
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These are based in part on measured flow losses at discrete swallets in creek channels as 

well as location and estimated average flow losses over larger identified upland internal 

drainage basins. The primary and secondary flow paths mapped are not all inclusive; I 

infer that more secondary and tertiary flow paths will be discovered with further 

investigation. Mapped potentiometric troughs during recession periods indicate strong 

hydraulic connection with discharge areas.  

The tracer recovery is the mass of tracer that is estimated or calculated to 

discharge from the aquifer system.  Tracer recoveries were calculated using measured 

concentrations at wells and springs and calculated springflows and pumping rates at each 

receptor site where the tracer was detected to estimate the mass of discharging tracer. The 

percent recovery is the ratio of recovered tracer mass to the mass of tracer injected.  The 

tracer masses described in this report refer to dye mixture amounts.  Because there is no 

direct comparison between receptor and water-sample results, only the grab-sample 

results (and not the charcoal receptor results) were used to calculate tracer recoveries.  

Consequently, the calculated recoveries may be underestimated, because many of the 

traces showed detectable tracer concentrations on receptors for months after the grab-

sample concentrations declined below detection limit. Sampling frequency also will 

affect tracer recovery.  Daily and weekly water samples tend to miss the peak of the 

tracer arrival, when most of the tracer typically will discharge.  Therefore, less frequent 

sampling will result in underestimation of the actual tracer recovery.  Calculation of 

percent recoveries also can be affected positively or negatively by errors in the estimation 

of springflow at each outlet.  Recovery data are also important for modeling groundwater 

constituent transport, to insure monitoring sites are properly located on downstream 

preferential groundwater flow paths, and to insure that all major discharge sites from the 

aquifer were monitored (Field, 2002b). Jones (1976) listed several factors that can 

account for failure to recover a tracer at its discharge site including: (1) the discharge 

site(s) were not monitored, (2) an insufficient amount of tracer was used, (3) complete 

sorption losses occurred on fine-grained sediment or organic matter, (4) very slow, 

diffuse groundwater flow causing the tracer to arrive at a concentration below the 

detection limit, (5) the duration or frequency of sampling was insufficient, (6) high 
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background concentrations obscured the tracer arrival, (7) the receptors were coated or 

saturated, (8) the tracer concentration was reduced by photo-decay or other degradation, 

(9) the tracer was diluted due to flooding, and (10) an inadequate amount of time was 

provided to allow purging of the same tracer from previous tests. 

Quantitative tracer tests (Mull et al., 1988; Field, 2002a) can quantify the 

hydrogeologic parameters of the Barton Springs Segment. Five traces from varying 

injection distances across the aquifer were analyzed including one short trace from 

Barton Creek in 1999 and three longer traces from 2005. These traces were selected 

because they had relatively well-defined breakthrough curves from samples collected at 

intervals of 1 to 4 hours.  The tracer concentrations from these four traces were quantified 

by Ozark Underground Lab (OUL) in Protem, Missouri. The fifth trace selected was the 

Rhodamine WT trace reported by Senger in 1983.  The concentrations were reported to 

be derived from a Turner fluorimeter and were estimated from a chart presented in 

Senger (1983). 

Transmissivity can be calculated from the hydraulic conductivity derived from 

mean tracer velocities through the following relation: 

 

Hydraulic conductivity = K = vne/I  (m/s)   (6) 

Transmissivity = T = K/m    (m2/s)   (7) 

 

where: 

 v = mean tracer velocity (m/s)  

ne = effective porosity assumed to be 0.001 (Smith and Hunt, 2004) 

I = potentiometric gradient from injection site to Barton Springs 

m= saturated thickness, which was assumed to be 130 m (Hauwert, 1997)  

 

The effective porosity of 0.001 is consistent with aquifer tests described in this chapter 

and groundwater models conducted by BS/EACD (Smith and Hunt, 2004). 

The longitudinal dispersion between an injection and discharge site can be 

quantified using the Chatwin (1971) method, which does not assume Fickian diffusion 
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(Field, 2002a).  The Chatwin method computes the importance of advection compared to 

longitudinal dispersion (the Peclet number) along the traced flowpath. First, the ratio of 

advection to dispersion is calculated by deriving Chatwin values for each breakthrough 

concentration measurement as: 

 

Y = t * ln((Cp*(tp)1/2)/(C*(t)1/2))     (8) 

 

where: 

Y = Chatwin values (sec ½)  

t = elapsed time (sec) 

tp = elapsed time to peak concentration (sec) 

C= instantaneous concentration (ppb) 

Cp = peak concentration (ppb) 

 

The Chatwin value intercepts (Yint) are graphically derived from a plot of Chatwin values 

versus elapsed time (min). A straight line extrapolation from the early tracer recoveries 

plot indicates a y-intercept Chatwin value (Figure 4.2) at zero elapsed time to calculate 

the longitudinal dispersion coefficient with the relation: 

 

DL = (L/ Yint)2        (9) 

          

where: 

DL= the longitudinal dispersion coefficient (m2/s) 

L = distance from injection point (m) 

Yint = y intercept of extrapolation from early Chatwin values versus elapsed time 

 

The Peclet number is the ratio of advective transport to hydrodynamic dispersive 

transport.  The hydrodynamic dispersion is the combination of bulk diffusion and 

mechanical dispersion: 
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Pe = (v*L)/DL        (10) 

         

 where: 

v  = mean tracer velocity (m/s) 

DL = the longitudinal dispersion coefficient (m2/s) 

L = distance from injection point (m) 

 

Typically the dyes are assumed conservative, but tracer properties vary (Aley, 

2000a; Aley, 2002; Hauwert et al., 2004a; Appendix I). Consequently, the advective 

component may be less because of the sorptive properties of the tracer, particularly when 

sulforhodamine B (SRB) is used.  The greater sorption of SRB causes a lower recovery of 

about 20% compared to an identical injection mass of sodium fluorescein (Aley, 2007, 

personal communication).  Rhodamine WT dye is composed of two isomers, one of 

which is conservative, and the other having high sorption (Rochat et al., 1975; Hofstraat 

et al., 1991; Sabatini and Austin, 1991; Shiau et al., 1992; Shiau et al., 1993). 

Consequently, about 50% of rhodamine WT is typically sorbed compared to fluorescein  

(Aley, 2007, personal communication).  Rhodamine WT and SRB sorb readily on clays, 

while fluorescein and eosine have a greater affinity for limestone surfaces (Sabatini, 

2000; Appendix I). All of the dyes used in this study sorb readily on organic materials, 

which is a desired property for recovery on charcoal receptors (Milulla et al., 1997). The 

tracer properties are further described in Appendix I. 

4.2.2. Review of Tracing Efforts   
In the early 1980s, groundwater tracing was applied successfully on a number of 

traces to San Marcos Springs south of the Barton Springs Segment (Ogden et al., 1986).  

One trace injected near the southern divide on the Blanco River was injected under high-

flow conditions (Barton Springs flow reported between 1.98-2.26 m3/s or 70-80 ft3/s) and 

arrived at San Marcos Springs a year later under low-flow conditions (Barton Springs 

flow about 0.85 m3/s or 30 ft3/s). Barton Springs was not monitored during this trace. A 

trace of the same cave on the Blanco River under low-flow conditions (Barton Springs 
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flow of 0.82 m3/s or 29 ft3/s) similar to those during the original trace arrival did not yield 

definitive recovery at monitored sites between San Marcos and Barton Springs although 

injection mass (6.8 kg or 15 lbs of 75% sodium fluorescein mixture) was probably too 

low to reach Barton Springs (site Q; Hauwert et al., 2004a; Hauwert et al., 2004b; Figure 

4.1).  

Dye injected in well 58-42-903 traveled 61 m (200 ft) to arrive at Main Barton 

Springs within 20 minutes (Senger, 1983; Figure 1.3). The breakthrough curve of this 

short trace and low discharge recession coefficient were used to characterize the Barton 

Springs Segment as having “a very large hydrodynamic dispersion” but the flow velocity 

was high compared to porous media aquifers (Senger, 1983).  Subsequent analysis of 

these tracing results in this chapter show that dispersion actually is very low compared to 

advection. After an unsuccessful trace from upper Barton Creek (site B in Figure 4.1) to 

Barton Springs however, Senger and Kreitler (1984) considered tracing “unreliable” for 

use in the Barton Springs Segment because of the large distances across the aquifer and 

assumed dispersive characteristics.  

Beginning in 1996, groundwater tracing was reapplied successfully across the 

Barton Springs Segment through regular tracing programs. From 1996 to 2000, a tracing 

study by the Barton Springs/Edwards Aquifer District (BS/EACD) and City of Austin 

Watershed Protection and Development Review Department (COA), with partial funding 

from EPA 319H program administered through TCEQ, traced sites across the outcrop 

area of each watershed (Hauwert et al., 1998; Hauwert et al., 2004a). From 2000 to 

present these traces continue at regular intervals carried out by the BS/EACD and COA 

(Hunt et al., 2004; Smith et al., 2006). Since 2005, a City of Austin Capital Improvement 

Project has partially funded tracer studies across the Barton Springs Segment for the 

purpose of simulating accidental spills of hazardous materials. Since 2000, groundwater 

tracing was included as a portion of this dissertation study. Table 4.1 presents a list of 

traces conducted through 2007 and sources with detailed methodology and results. Traces 

conducted in 2006 to 2009 have not been analyzed in this dissertation. A number of 

repeated traces were conducted in the Blanco River watershed in 2008 and may continue 
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in 2009. The Blanco River traces were performed cooperatively by the Edwards Aquifer 

Authority, BS/EACD, COA, Zara Environmental and Ozark Underground Labs. 

The tracing studies commenced in 1996 demonstrated that tracing could map 

groundwater flow paths. In the 20 traces conducted from 1996 to 2000, 17 were 

recovered at some monitored sites, which indicate that properly conducted tracer tests are 

appropriate tools of investigation within the Barton Springs Segment. In 1996, the 

BS/EACD and COA Tracers reinjected at the same site B previously utilized by Senger 

(1983) and were successfully recovered in the Colorado River just downstream of Cold 

Springs.  The tracer was not detected at Barton Springs (Hauwert et al., 1998).  Cold 

Springs and portions of the Colorado River upstream of Barton Creek may not have been 

monitored in the 1982 trace.  

From tracer injections, the groundwater flow rate of initial arrival of tracer from 

natural recharge features along traced flow paths varied from 1.6 to 11 km/day (1 to 7 

mi/day, traces C, F, A’, H, J, D, E, N, and G in Figure 4.1) during moderate, high, and 

overflow conditions.  Traces from Onion Creek required as little as three days to traverse 

the entire Edwards outcrop area and initially discharge at Barton Springs.  Flow 

conditions affect the groundwater flow rate by increasing hydraulic gradients and drying 

of upper-level conduits. During low-flow conditions, groundwater velocities of 1.1 to 1.6 

km/day (0.7 to 1 mi/day; traces A, B, L, O, and P in Figure 4.1) were measured.   

Recovering tracers during low-flow conditions is difficult because: (1) many areas 

from the western side of the Edwards outcrop area are transiently unsaturated; (2) 

potentiometric surfaces near preferential groundwater flow paths are discrete troughs 

instead of mounds, hence wells near but not directly on the flow paths may not recover 

dye; and (3) the advective gradient is low so that travel times are slower and 

breakthroughs show a relatively higher dispersion than during moderate-flow conditions 

(Hauwert et al., 2004a).  

Three of the tracers injected during low-flow conditions (sites I and R on Figure 

4.1, site Q is further south on the Blanco River) were never recovered at monitored sites. 

Despite previous non-recovery of trace R under low-flow conditions, the same dye was 

reinjected at a cave (10d) 600 m from site R under high-flow conditions in 2007 and was 
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clearly detected at Barton Springs within 3 days. Traces B, K, M were injected during 

low-flow conditions and recovered from wells or rivers but not in spring discharge.  

4.2.3. Groundwater Basins and Preferential Groundwater Flow Routes 
Based primarily on injected tracer information, the Barton Springs Segment can 

be separated into three groundwater basins: Manchaca, Sunset Valley, and Cold Springs 

(Figure 4.1; Hauwert et al., 2004a). These preferential groundwater flow routes reveal 

significant anisotropy and heterogeneity within the Barton Springs Segment. The 

presence of preferential flow paths within the Barton Springs Segment is apparent by 

observations of groundwater convergence, such as the appearance of tracers injected in 

different watersheds appearing at a single well and not other wells (Hauwert et al., 

2004a).  

Some flow paths change location or reverse flow under different flow conditions. 

During overflow conditions, overloading of regular flow paths causes diversion of some 

or all of the new recharge to other flow paths (Hauwert et al., 2004a; Hauwert et al., 

2004b). During overflow conditions, recharge is diverted in several places from eastern 

flowpaths to more western flow paths to the north or south. Overflow conditions may be 

localized and are not necessarily aquifer-wide. During low-flow conditions, some flow 

paths probably combine or be dry. 

4.2.3.1. Manchaca Groundwater Basin 
The Manchaca groundwater basin is the largest groundwater basin in the Barton 

Springs Segment (Figure 4.1).  The Edwards outcrop and eastern drainage areas of the 

Manchaca groundwater basin are 181 km2 (70 mi2) and its artesian area is 129 km2 (50 

mi2) in area (see Figure 2.6).  It is dominated by two preferential flow routes, the 

Manchaca Flow Route and Saline-Line Flow Route. The Manchaca Flow Route 

discharges at Eliza, Main, and to a lesser extent at Old Mill Springs. It represents by far 

the largest flow contribution to Barton Springs.  The convergence of flow along the 

Manchaca Groundwater Flow Route is demonstrated by multiple tracer recoveries from 

injections in different sites of Bear, Little Bear, and Onion Creek watersheds at a single 

well (58-50-742) but not other monitored wells nearby. The Manchaca Flow Route is 
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indicated by a broad potentiometric trough, such as those mapped by Brune and Duffin 

(1983), Slade et al. (1986), and Hauwert and Vickers (1994). 

The presence of a Saline-Line Flow Route (Figure 4.1) is inferred from an 

injection at site O (Figure 4.1) in Onion Creek where a 10-day delay in the arrival of a 

tracer at Old Mill Springs was observed after its initial arrival at Main and Eliza Springs 

(Figure 4.2). Dye injected within the Manchaca groundwater basin south of Bear Creek 

and west of the Manchaca Flow Route arrived at much lower concentrations at Old Mill 

Springs than at Eliza and Main Barton Springs, suggesting dilution of Old Mill Springs 

from a separate source (Figure 4.3). A number of tracers injected in Site M on Onion 

Creek were detected in wells eastward and northeastward toward and adjacent to the 

Saline-Water Zone instead of converging with the Manchaca Flow Route (Figure 4.1). 

From tracer recovery, only a single well (58-58-209) is inferred to be the closest 

identified well to the Saline-Line Flow Route (Figure 4.1). Tracer detections in wells 

along this flow route are sparse because there are few wells along the Saline-Water Line 

and those that exist have not been the focus of monitoring until after the flow path was 

recognized in 2002. For mapping purposes, this flow route is assumed to follow the 

Saline-Water Line as defined by Flores (1990).  Garza (1962) and DeCook (1963)  

mapped a potentiometric trough through the Kyle area and trending southeast of the Buda 

that may correspond to a portion of the Saline-Water Flow Route. Abbott (1973) and 

Senger (1983) hypothesized that mixing of saline water with fresh Edwards groundwater 

could result in undersaturation with respect to calcite and dolomite that could enhance 

dissolution along the Saline-Water Line. Dilution from the Saline-Line Flow Route is 

interpreted by lower tracer concentrations in Old Mill Spring than in Eliza Springs of 

tracers following the Manchaca Flow Route (Figures 4.2 and 4.3; Hauwert et al., 2004b).   

During low-flow conditions, it is possible the Saline-Line Flow Route (Figure 

4.1) converges with the Manchaca Flow Route, similar to the convergence of the Sunset 

Valley Flow Route and Manchaca Flow Route. This alteration in the Saline-Line and 

Sunset Valley Flow Routes is indicated by the historic drying of Old Mill and Upper 

Barton Springs (which consist largely or entirely of flows from the Saline-Line and 

Sunset Valley Flow Routes, respectively) during low-flow conditions. The potential 
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variation in groundwater divides under low-flow conditions is not sufficiently understood 

to allow precise mapping of the convergence sites. 

During certain high-flow conditions, an overflow condition occurs as the Saline-

Flow Route backs up from excessive recharge, causing diversion of water to the 

Manchaca Flow Route and to San Marcos Springs. This condition is described in in 

section 4.5 and is mapped in Figure 4.4. 

The Saline-Line Flow Route appears to be fed solely by the Onion Creek 

watershed and a relatively small proportion (< 3 %, see section 4.1.3.1) of saline-water 

leakage, although the Blanco River watershed may be a possible recharge source under 

certain flow conditions.  

The southern divide lies between Onion Creek and the Blanco River (Andrews et 

al., 1984; Slagle et al., 1986). Traces conducted between the Blanco River and San 

Marcos Springs have discharged at San Marcos Springs and other springs south of the 

Blanco River (Ogden et al., 1986; Schindel, 2006). Traces in Onion Creek through 2002 

discharged from Barton Springs and not San Marcos Springs (Hauwert et al., 2004a and 

b). A trace from Crippled Crawfish Cave (Site S on Figure 4.1) in Onion Creek under 

high-flow conditions was recovered from both Barton Springs and (to a lesser extent) San 

Marcos Springs. This suggests that under some overflow conditions portions of Onion 

Creek correspond to the southern divide. This groundwater divide fluctuates between the 

Blanco River and Onion Creek and is not fixed along a surface-water divide. For most 

purposes, however, the current delineation of the southern divide along the surface water 

divide between the two watersheds (Guyton and Assoc., 1964; Andrews et al., 1984) is a 

reasonable approximation, but it may not be sufficient for purposes such as a water 

balance of recharge to Barton or San Marcos Springs or for predicting the fate of spills in 

the Blanco River. Currently investigations are underway by BS/EACD, EAA, and COA 

to determine if the Blanco River contributes flow to Barton Springs under low-flow 

conditions.  The southern divide is discussed further in Section 4.3. 
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4.2.3.2. Sunset Valley Groundwater Basin 
The Sunset Valley groundwater basin is about 30 km2 (12 mi2) in size, and 

consists entirely of Edwards outcrop and eastern drainage areas. The basin was defined 

by the area of tracer injections that were recovered at Upper Barton and Main Barton 

Springs, but not Eliza, Old Mill, or Cold Springs. The tracer concentrations in grab 

samples were five to ten times higher at Upper Barton Springs than at Main Barton 

Springs, suggesting that Main Barton receives most of its flow from water sources other 

than the Sunset Valley groundwater basin. 

The Sunset Valley Flow Route focuses flow from the Sunset Valley area to 

Barton Springs and understanding of its presence was originally based on interpretations 

of the Barton Springs fault and the presence of a 12-m (40-ft) deep potentiometric-

surface trough crossing Loop 360 just east of Barton Creek (City of Austin, 1991; 

Hauwert and Vickers, 1994; Hauwert, 1995). Subsequently, injected dye traces verified 

the presence of this flow route and its role in providing flow to Upper and Main Barton 

Springs (Hauwert et al., 2004a; Hauwert et al., 2004b). Mahler et al. (2006) verified the 

presence of the Sunset Valley Flow route by comparing concentrations of organic 

contaminants in Upper Barton Springs and wells in the Sunset Valley area. Based on 

spring flow measurements and differences in dye concentration and chemistry, the flow 

contribution to Barton Springs averages about 0.28 to 0.42 m3/s (10 to 15 ft3/s; Hauwert 

et al., 2004b).  Sites on or near this major flow route include Upper Barton Springs and 

wells 58-50-231, 58-50-221, and 58-50-2N3 (now plugged).  

The divides of the Sunset Valley Groundwater Basin vary with flow condition. 

During low-flow conditions, when Upper Barton Springs is dry, the Sunset Valley Flow 

Route may shift its location to the east and converge with the Manchaca Flow Route prior 

to discharging at Main Barton and Eliza Springs (Hauwert et al., 2004a). This 

convergence is indicated by the drying of Upper Barton Springs under low-flow 

conditions and the occasional appearance of tracers injected in the Sunset Valley 

groundwater basin in Eliza Springs during low-flow conditions. Under some overflow 

conditions, groundwater from the Slaughter Creek watershed of the Manchaca 
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groundwater basin is diverted to the Sunset Valley groundwater basin through Blowing 

Sink Cave, as described in Section 4.4 (Figure 4.4). 

4.2.3.3. Cold Springs Groundwater Basin 
Part of the groundwater divide between the Cold Springs and Barton Springs 

basins was delineated with water-level responses to the draining of Barton Springs pool 

in wells by Senger (1983). Slade et al. (1986) suggested that one possible cause for a 12% 

difference between measured discharge and recharge in his water budget calculation 

could be that portions of Barton Creek could actually contribute to Cold Springs. The 

assumption that the entire Edwards outcrop area portion of the Barton Creek watershed 

contributes recharge to Barton Springs has been proved inaccurate by groundwater 

tracing conducted during both low and high groundwater flow conditions (Hauwert et al., 

2004a). In fact, most of the outcrop area of the Barton Creek watershed overlies the Cold 

Springs groundwater basin. Low-flow surveys of Barton Creek indicate that most flow 

loss in Barton Creek also occurs over the Cold Springs groundwater basin (Smith et al., 

2001).  

The Cold Springs groundwater basin is about 30 km2 (12 mi2) in size and also 

consists entirely of Edwards outcrop area. As delineated by tracing under moderate or 

higher flow conditions, Barton Creek channel has 3.5 km in the Cold Springs 

groundwater basin, 2.5 km along the Cold Springs and Sunset Valley groundwater basin 

divides, 3 km within the Sunset Valley groundwater basin, and about 0.7 km within the 

Manchaca groundwater basin (Figure 4.5). The lower 1.5 km of Barton Creek channel is 

a gaining stretch except during low- flow conditions and under those conditions recharge 

losses are limited. This basin was delineated by injecting tracers into swallets in the 

Barton Creek and Williamson Creek watersheds and in one well in the Williamson Creek 

channel (Figure 4.1).  All of the swallet injections were accomplished under dry or drying 

creek conditions, using fire trucks, water hydrants, or the receding creek flow to flush the 

tracer. This tracing determined that Edwards outcrop area portion of the Barton Creek 

watershed upstream of Loop 360 overlies the Cold Springs groundwater basin, but at 

least some of the flow loss downstream of Loop 360 contributes to Barton Springs. The 
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vicinity of the Barton and Cold Springs groundwater divide was traced under low (0.5 

m3/s or 18 ft3/s Barton Springs flow), moderate (1.73 m3/s or 61 ft3/s Barton Springs 

flow), and high (3.0 m3/s or 107 ft3/s Barton Springs flow) conditions.  

In 1997, dye was poured into a USGS monitor well (Site F, Figure 4.5) in 

Williamson Creek using diverted creekwater to flush the dye. The dye injected in the 

Williamson Creek well was recovered from Cold Springs and later from a well in Travis 

Country (well 58-50-211, Figure 4.5). The flow path from this well to Cold Springs 

corresponds to a potentiometric-surface trough that delineates the Cold Springs Flow 

Route. The portion of Williamson Creek from just upstream of Highway 290 to the Brush 

Country road crossing was traced only once and during high-flow conditions. Until 

further tracing data are available, I infer that this area contributes to Cold Springs during 

other recharge conditions. Low-flow measurements along Williamson Creek suggest 

limited flow-loss of about 0.14 m3/s (5 ft3/s) upstream of the Brush Country Road. Most 

creek recharge on the main channel of Williamson Creek occurs downstream of Brush 

Country Road within the Sunset Valley groundwater basin.  

Although no tracers were injected in the Eanes Creek watershed, it is assumed 

that recharge from this watershed contributes to Cold Springs or smaller springs 

discharging directly into the Colorado River. Eanes Creek is within the Cold Springs 

groundwater basin and the Colorado River is at the lowest base elevation.  The lower 1 

km of Eanes Creek channel approaches within 0.8 km of Barton Springs.  

The map of the Cold Springs groundwater basin divide could be further delineated 

by additional tracing under varying flow conditions, particularly in Barton Creek channel 

downstream of Loop 360, in Williamson Creek upstream of Loop 1, and along the 

western edge of the outcrop area in the Slaughter and Bear Creek watersheds.  Except for 

a few injections into swallets in Onion Creek and one injection into flowing Bear Creek, 

all of the tracers were injected when the creeks were dry or carried only a small flow.  

Consequently, it cannot be ruled out that under higher creek flow conditions when most 

recharge is occurring, mounding beneath the creek could divert some flow upstream of 

Loop 360 towards Barton Springs (Raymond Slade, personal communication, 2005).  
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4.2.3.3.1. Estimation of Cold Springs Discharge Rate  

The most precise flow measurements of Cold Springs are taken as the difference 

in upstream and downstream flow of the Colorado River during drought conditions when 

the river flow is very flow. On August 10, 1918, the U.S. Geological Survey gauged the 

Colorado River and discovered a 0.1 m3/s (3.7 ft3/s) increase between Tom Miller dam 

(0.58 m3/s or 20.5 ft3/s) and 0.4 km (0.25 mi) below Deep Eddy (0.68 m3/s or 24.2 ft3/s).  

This increase in flow is attributed primarily to the flow of Cold Springs because it is the 

only known major spring along this reach.  On the same day, a flow of 0.4 m3/s (14.3 

ft3/s) was measured discharging from Barton Creek, which can be attributed to Barton 

Springs.  The 1918 flow measurement was taken during a drought and probably 

represents one of the most accurate instantaneous measurements of Cold Springs, but 

does not reflect average conditions. Because the flow of Cold Spring is a fraction of the 

larger Colorado River flows, a precise measurement of Cold Springs from upstream and 

downstream flow is possible only during drought periods when Colorado River flows 

were sufficiently low.  

Brune (1981) described Cold Springs as consisting of at least seven springs, but 

only two are above the normal level of Town Lake.  He listed four discharge 

measurements varying from 0.08 to 0.12 m3/s (2.9 to 4.2 ft3/s), some of which were 

measured by the USGS from upstream and downstream measurements of Colorado River 

flow.  It is possible that some of the reported direct flow measurements by Brune 

represent only part of the flow of Cold Springs, and do not include the submerged 

portions of Cold Springs that he observed.  The flow measurements compiled by Brune 

(1981) indicate that Cold Springs is a relatively constant-rate spring whose flow varies 

from about 0.08 to 0.11 m3/s (3 to 4 ft3/s).  However, observations of the portion of Cold 

Springs above the Colorado River reveal variable flow, with additional outlets becoming 

active during moderate- to high-flow conditions. 

Measurements of partial flow by the City of Austin in 1997 and 1999 measured 

exposed Cold Springs discharge of 0.14 m3/s during high-flow conditions in 1997.  At 

times of relatively low-flow conditions (Barton Springs discharge of 0.85 m3/s or 30 ft3/s) 

exposed Cold Springs discharge measured between 0.13 and 0.19 m3/s (4.8 and 4.5 to 6.8 
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ft3/s).  Hauwert et al. (2004a) correlated partial flow measurements of Cold Springs with 

Barton Springs flow and suggest that minimum average Cold Springs flow may exceed 

0.23 m3/s (8 ft3/s), although the great majority of measurements included only part of 

Cold Springs flow. Town Lake was lowered for 2 weeks in early 2008, exposing more 

but not all of the discharge points for Cold Springs. On January 29, 2008, I measured 

0.35 m3/s (12.4 ft3/s) discharging from the exposed portions of Cold Springs and 1.87 

m3/s (66 ft3/s) from Barton (Main, Eliza, and Old Mill) Springs. 

A water balance for Town Lake was conducted by Don Rauschuber and 

Associates for BS/EACD (COA, 1992).  The balance considered measured flows 

between Tom Miller Dam and Longhorn Dam, as well as measured flows from Barton 

Springs and measured diversion by the City of Austin Green Water Treatment Plant.  The 

balance indicated an average excess of 0.82 m3/s (29 ft3/s), which could be attributed to 

unmeasured springs (such as Cold Springs) and other sources feeding Town Lake. 

Groundwater tracing studies conducted between 1996 and 2000 delineated the 

groundwater basin for Cold Springs to be 30 km2 (12 mi2) in area (Figure 4.5). Based on 

the tracing data, the watershed source area for potential recharge to Cold Springs is 

estimated to be about 340 km2 (130 mi2) in size and includes: 

1)  the entire Barton Creek watershed contributing area.  The drainage area 

upstream of the Lost Creek Flow Station is about 277 km2 (107 mi2). 

2)  the Barton Creek Edwards outcrop area that recharges to Cold Springs.  The 

area between Lost Creek and Loop 360 flow stations is about 23 km2 (9 mi2). 

3)  the Williamson Creek watershed source for Cold Springs, which includes the 

18 km2 (7 mi2) square mile drainage area upstream of Brush Country Road 

USGS flow station. 

4)  the entire 9.3 km2 (3.6 mi2).square mile Eanes Creek watershed, which is 

ungauged and has few flow measurements. 

5)  smaller creeks and drainages that flow directly to Colorado River, between 

Bee Creek and Eanes Creek.  This drainage area is only about 3.8 km2 (1 mi2). 
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A first approximation of the expected Cold Springs groundwater basin discharge 

is estimated by comparing the size of the outcrop areas over the groundwater basins 

contributing to Barton Springs (211 km2 or 82 mi2), the average flow of Barton Springs 

(1.42 m3/s or 50 ft3/s), and the size of the outcrop area over Cold Springs groundwater 

basin (30 km2 or 12 mi2): 

 

Cold Springs proportional flow based on groundwater basin size = 

 

Area (km2)*flow (m3/s) = 30 * 1.42      =   0.20 m3/s or 7.1 ft3/s  (11) 

   Area (km2)       211 

 

The catchment area for Barton Creek extends about 300 km2 above the Edwards outcrop 

area. Also, since the Cold Springs groundwater basin lies on the western edge of the 

Edwards outcrop area and upstream portion of Barton Creek, it will receive more 

sustained baseflow than eastern and artesian portions of the Manchaca and Sunset Valley 

groundwater basins. Artesian areas may not significantly contribute to flow except 

through subsurface leakage. Based on these factors, we would expect the flow of Cold 

Springs groundwater basin to be greater than the flow contributed by similar area of 

groundwater basin contributing to Barton Springs. 

Another estimation of discharge from the Cold Springs groundwater basin is 

calculated from measured flow losses in portions of Barton and Williamson Creeks 

known through tracing to contribute flow.  The average daily flow measured at USGS 

Loop 360 and Lost Creek flow stations were downloaded from the U.S. Geological 

Survey Web site for the period of Sept. 28, 1988, to Sept. 28, 1998.   For this 10 year 

interval, the flow measured at the downstream Loop 360 station was subtracted from the 

upstream Lost Creek station.   Following a rain event, the difference between upstream 

and downstream flow stations commonly was negative (greater at the downstream 

station) as a result of the local generation of runoff on the Edwards outcrop area.  The 

difference between upstream and downstream flow stations, or potential flow loss, 

following storms was extrapolated back to peak flow from the trend of diminishing flow 
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loss that occurred after the effects of local runoff ceased. The potential flow loss is 

corrected only for data gaps and for post-storm runoff to create corrected flow loss that 

represents infiltration in the main channel of Barton Creek. 

The flow loss between Lost Creek and Loop 360 flow stations is about 2.8 m3/s 

(100 ft3/s) within a few days of floods. Then flood waters are stored in bank alluvium and 

reach higher recharge features and higher hydraulic head increases recharge to swallets.  

Subsequently, the flow loss upstream of Loop 360 stabilizes at about 0.85 m3/s (30 ft3/s), 

and eventually declining to about 0.28 m3/s (10 ft3/s) over time.  For the 10-year period of 

record, the average daily flow loss along the main channel of Barton Creek upstream of 

Loop 360 is 0.4 m3/s (14 ft3/s).  The flow loss on Barton Creek is frequently limited by 

the amount of upstream allogenic flow. The creek bottom of Barton Creek is also limited 

by the recharge capacity of a relatively few sites where creek flow loss or recharge gain 

occurs (Smith et al., 2001).  Any additional runoff beyond its limited recharge capacity 

will flow downstream of Loop 360 where it potentially can contribute to Barton Springs 

or flow directly to the Colorado River.  

The USGS flow station at Brush Country Blvd. has a record from March 11, 

1993, to September 30, 2003.  A recharge loss of roughly 0.14 m3/s (5 ft3/s) was 

measured along the main creek channel of Williamson Creek upstream of Brush County 

in the Cold Springs groundwater basin using instantaneous flow measurements with a 

Marsh McBirney flow meter. Flow loss to Cold Springs within the Williamson Creek 

channel was calculated by estimating a daily flow loss of 0.14 m3/s (5 ft3/s) for each day 

where the average creek flow was greater than zero.  It is likely that this flow loss would 

vary, such as increase during storms or diminish as specific features plug temporarily. 

However, insufficient upstream flow data were available. The average flow loss to Cold 

Springs from Williamson Creek over the 6.5-year period from March 11, 1993, to 

September 30, 1999, was only about 0.02 m3/s (0.65 ft3/s). 

Additional unmeasured contributions to the recharge of Cold Springs were not 

estimated because the possible errors would be significant compared to their possible 

contributions.  These contributions include recharge from direct infiltration over the Cold 

Springs groundwater basin, and urban contributions such as infrastructure leakage 
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through water lines, wastewater lines, septic tanks, and lift station releases (Garcia-

Fresca, 2004).  The City of Westlake operates at least one floodwater injection well that 

is a converted internal drainage sinkhole.   

Given the traced size of the Cold Springs groundwater basin, the flow loss 

occurring within its groundwater basin, and the flow gain estimated to the Colorado 

River, it is not possible to accept that Cold Springs flows at a relatively constant 0.08 to 

0.11 m3/s (3-4 ft3/s) or that this range approaches its flow average. A water balance for 

the Cold Springs groundwater basin suggests that its minimum average discharge is about 

0.42 m3/s (15 ft3/s) or more. The Barton Creek watershed contributing area may be the 

largest source for potential recharge to Cold Springs.  The Cold Springs groundwater 

basin contains only about 31 km2 (12 mi2) of the 340 km2 (130 mi2) Cold Springs source 

area that extends into the contributing area of the Barton and Williamson Creek 

watersheds. 

An alternate method for determining Cold Springs flow is constructing a rating 

curve from water levels of a well in the Cold Springs basin using a number of 

instantaneous flow measurements derived by tracer dilution tests (Kilpatrick and Cobb, 

1985; Bennett, 2000, personal communication), or possibly by mapping thermal or 

chemical plumes from Cold Springs into the Colorado River. 

4.2.3. Hydrogeologic Parameters Derived from Dye-Tracing Data  
The Chatwin analysis of longitudinal dispersion yields Peclet values greater than 

1,000 for all five of the traces examined (Table 4.1).  The Barton Springs well test 

reported by Senger (1983) showed the highest of the five traces, with a Peclet number of 

about 108.   Peclet numbers below 0.4 would suggest a dispersion-dominated system, 

while values over 6 indicate a system dominated by advection (Fetter, 1992).  The Peclet 

values from five tracer tests in the Barton Springs Segment are two to seven orders of 

magnitude above six. Thus, this aquifer can be characterized as having a strong 

component of advection, where the molecular diffusion and transverse dispersion are 

small and the longitudinal dispersion is very low compared to the advective component 

of transport. This result is intuitively obvious considering that a relatively low mass of 
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injected dye (16 kg) can be readily recovered across the extent of the Barton Springs 

Segment.  The low dispersion found in the five tracer tests contradicts Senger’s (1983) 

impression that dispersion was very high within the Barton Springs Segment. 

Some studies have looked at increases in longitudinal dispersion with scale. Based 

on 59 studies worldwide, Gelhar et al. (1992) found an increase in dispersivity with scale; 

however, once the low confidence tests were filtered out the trend was not significant.  

Domenico and Schwartz (1998) summarized that small-scale column tests show a typical 

range in dispersion from 10-2 to 1 cm while dispersions from larger scale field 

measurements typically range from 0.1 to 2 m.  The discrepancy between scales is 

attributed to heterogeneities present at larger scales.  The relation between increasing 

dispersion and scale within the Barton Springs Segment is insignificant based on four of 

the five tracer tests examined (Figure 4.6b).   

Sorption depends on the properties of the rock surfaces or fracture skins, the 

properties of the solute being sorbed, as well as advective gradient. Sorption of dye from 

the traces cannot be precisely derived except as a maximum possible value since many 

factors, including dye properties influence how much is recovered. Recoveries of 0% to 

77% in traces shown on Table 4.1 can be potentially affected by factors including the 

following: 

(1) effects of sampling interval on quantification of the tracer loading, 

particularly during the peak breakthrough, 

(2) long-term storage in the aquifer discharged below detection limit or in 

pulses between sampling events, 

(3) relatively low mass of injected tracers, 

(4) accuracy of measurement of spring flow rates, 

(5) sorption by fracture skins and conduit walls, 

(6) sorption of dye by organic constituents in the groundwater, 

(7) adsorption of non-conservative dyes by fine-grained fill materials, 

(8) the potential that unknown discharge sites of the dye were not monitored,  

(9) flow conditions, 

and 
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(10) the potential for insufficient number of monitoring sites traced and 

analyzed. 

The amount of dye injected is likely a large factor for how much is recovered. 

Consequently, the recovery of a small mass of dye may not reflect the sorption of a large 

spill volume of substance with different properties.  

Hauwert et al. (2004a) hypothesized that groundwater flow from the western side 

of the Edwards outcrop area may be through more immature flow paths with smaller 

recharge areas and more limited poorer hydraulic connection. The traces from the 

western side of the outcrop area to discharge springs prior to 2001 with poor recovery 

were all conducted during low-flow conditions.  However, post-2001 traces injected 

under moderate or higher flow conditions, including J, K, 10a, showed very strong 

hydraulic connection to the western side of the outcrop area.  One exception was tracer T, 

whose lack of recovery is attributed to the tracer being trapped in a mud plug at the 

bottom of the injection cave. Zara Environmental, City staff, and volunteers who cleaned 

out the cave in 2007 encountered the dye in mud excavated from the bottom of the cave.  

Therefore, poor hydraulic connections along flowpaths to the western side of the outcrop 

area may be the result of dried conduit connects or low hydraulic gradients during low-

flow conditions and there is no evidence that western flow paths are less developed. 
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4.3. FLOW PATHS DERIVED FROM WATER-LEVEL DATA 
Water levels in wells and caves provide valuable information about groundwater 

flow paths. Potentiometric surfaces in the Barton Springs Segment can have considerable 

relief. For this reason, water-level data are considered together with more definitive 

groundwater-tracing data to derive flow paths. 

4.3.1. Water-Level Measurement Methodology 
Water-level measurements were collected from well and spring sites during the 

course of the study so that potentiometric maps could be prepared.  A potentiometric 

surface represents the elevation that water would rise in a well screened within the 

aquifer of interest.  The potentiometric-surface elevation is different from a water table, 

because within the artesian area, the water level in an Edwards Aquifer well will rise 

above the top of the Edwards Aquifer. This map serves to estimate the groundwater-flow 

paths between injection sites and monitored sites where the tracer is detected.  The depth 

to water within a well was measured using an electric water-level meter read to the 

nearest 0.003 m (0.01 ft) from the top of casing or other reference point.  This resolution 

is necessary when comparing changes in water level within the same well. Some potential 

errors in mapping the potentiometric-surface elevation include inaccurate measurement 

of the elevation of the reference point; changes in the potentiometric surface over time; 

short-term, localized changes in water level due to pumpage; mixing of separate aquifer-

producing units because of well construction; and extrapolation of the potentiometric 

elevation between measured sites.   

The top of casing or spring surface elevation of nearly all of the sites from which 

water-level measurements were taken were measured by a Trimble XRS or Pathfinder 

Global Positioning Unit (GPS).  The GPS data was postprocessed to achieve maximum 

horizontal and vertical errors of about 1 m (3 ft). A comparison of 10 elevation 

measurements collected at a first order benchmark on different days by this GPS unit 

indicated an average accuracy of  + 0.75 m (2.47 ft) in elevation measurements with a 

maximum vertical error of 1.27 m (4.17 ft.)  For other sites, the elevation of the reference 

point was either estimated from a 7.5 minute, 10- to 20- ft (3.05-to 6.1-m) contour 
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interval USGS topographic map, surveyed relative to sea level to within 0.003 m (0.01 

ft), measured with a digital altimeter, or estimated from City of Austin 2-ft (0.61 m) 

contour interval topographic surveys or other site-survey maps.  The surface elevation of 

a flowing spring was used as the potentiometric-surface elevation if the spring likely 

represents discharge of the water table from the Edwards Aquifer.  The resolution of one 

meter (3 ft) is adequate for mapping 3 m (10 ft) interval potentiometric surfaces. 

The span of time over which the water-level data were collected for a 

potentiometric map ranged from 2 days for a local area to several weeks for the complete 

map. Continuous water-level measurements were available from 9 to 15 water-level 

monitor wells maintained throughout the Barton Springs Segment of the Edwards 

Aquifer by the BS/EACD and USGS.  The water-level data from wells not screened 

within the Edwards Aquifer were not used for the potentiometric-surface maps.  

However, on the western side of the study area, wells commonly are screened in both the 

Edwards and upper Trinity Aquifers to the extent that these cannot be fully evaluated 

without further information.  In addition, wells on the eastern side of the study area 

commonly do not fully penetrate the Edwards Aquifer. However, there is no evidence 

that the upper and lower portions of the Edwards Aquifer are not well connected 

hydraulically.   

4.3.2. Applications of Water-Level Analysis 
Davis and Deweist (1966) suggested that the angle between potentiometric 

surfaces and actual flow directions quantifies the anisotropy of an aquifer. Sayre and 

Bennett (1942) and Arnow (1963) noted that apparent discrepancy between water-level 

surfaces and flow directions actually is caused by insufficient distribution of water-level 

measurements.  Focused or discrete recharge through a swallet can create potentiometric 

mounding underneath a creek, which in some cases, where insufficient water-level data 

are present, can lead to the interpretation that flow lines are parallel or upgradient of the 

mapped potentiometric table slope (Thrailkill, 1968).   

Quinlan and Ray (1981) mapped potentiometric troughs and groundwater basins 

in the Mammoth Cave area using 1,400 well and 500 dye traces. Their study showed that 
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groundwater flow paths converged similar to stream tributaries and carried flow at rates 

up to 10 km/day.  

Thrailkill (1985) examined water-level measurements from 65 wells in Kentucky, 

and, when used in conjunction with groundwater tracing data, they indicated the general 

groundwater basins and interbasins.  The potentiometric lows may suggest major 

conduits of groundwater flow in karst areas.  Thrailkill recommended that in karst areas 

researchers should not rely solely on widely spaced well data averaged together to 

determine groundwater-flow directions, or to discount water-level data points simply 

because they differ abruptly from other water-level data. White (1999b) illustrated the 

flow from major phreatic groundwater conduits to the surrounding aquifer during peak 

recharge periods and flow from the surrounding aquifer to conduits during recession 

periods. 

Water tables are not planar in karst aquifers and the determination of 

downgradient directions can be complicated by numerous factors creating gradients. 

Potentiometric mounding, which occurs during the rising limb of the Barton Springs flow 

hydrograph and for some time after its peak, produces gradients both into the adjacent 

aquifer from major flow paths and toward the discharge springs. Potentiometric troughs 

form during the recession period of Barton Springs flow and drain storage from the 

aquifer into the major flow paths.  Figure 4.7 illustrates multiple downgradient flow paths 

during mounding conditions: 1) gradients on either side of focused recharge sites such as 

creek swallets, 2) gradients from preferential flow routes into aquifer storage, 3) gradient 

along the preferential flow paths to discharge springs, and (4) bifurcation gradients 

through periodically saturated upper-level conduits.  Mounding and recession troughs 

create the challenge of finding “relevant” groundwater water-quality and water-level 

monitoring sites as discussed by Quinlan (1989 and 1990). During high-flow conditions 

of 2005 tracing from Site S on flowing Onion Creek (Figure 4.1), mounding along the 

preferential flow path was evident from the recovery of tracer in wells 430 m (1,400 ft) 

southeast and 210 m (700 ft) northwest of the flow path (Figure 4.4). However, tracers 

injected in Site O on dry Onion Creek during low-flow conditions in 2000 were 

recovered only from wells very near the flow path. Many random well locations intercept 
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a relatively small amount of groundwater flow from mixed sources or generated from a 

relatively small source area or isolated source.  

The development of potentiometric mounds and troughs causes high variation in 

water levels along preferential flow routes inside the artesian area. Consequently, the 

greatest sensitivity to water-quality and water-level changes is found on or near 

preferential flow routes. This is best indicated by the strong recovery of a distant tracer 

injection (Milanović, 1981, p. 128). Conversely, on the Edwards outcrop area where 

conduits are only partially filled, water levels remain relatively static unless flood flows 

are sufficient to fill the cave and conduits.  

The depth of a potentiometric trough varies, but the maximum depth determined 

from available wells reflects its the significance as a flow route.  Detailed mapping of the 

water table between the City of Sunset Valley and Barton Springs revealed a 12 m (40 ft) 

deep potentiometric trough corresponding to the Sunset Valley Flow Route (Figure 4.8; 

Hauwert and Vickers, 1994; Hauwert et al., 2004a).  

Additionally, the water level of 58-50-2N3, a sediment-laden well at the lowest 

point of the trough in the Sunset Valley Flow Route, showed a peculiar lack of variation 

at lower flow conditions (Hauwert and Vickers, 1994; Figures 4.9). Compared to water 

levels in well 58-50-301 (Figure 4.9), water-levels in well 58-50-2N3 fluctuate very 

slowly between 131 and 133 m above mean sea level, which may be interpreted as 

resulting from a partially water-filled conduit of the Sunset Valley Flow Route. Thus, the 

vertical height of the conduit is estimated to be about 2 m or more in diameter and its 

base elevation about 130 m msl. From this information, the primary conduit of Sunset 

Valley Flow Route is positioned in the uppermost pulverulitic bed at the top of the 

Kirschberg Member.  Bonacci (1995) found similar delayed responses that revealed the 

elevation and dimensions of a major cave conduit when he compared the discharge of 

Ombla spring in Croatia to water-level response of wells within the karst aquifer and  

Relatively constant water levels are observed in a second well near a major 

partially-filled cave conduit associated with a preferential flow path. Well 58-50-411 is 

located near the extension of a perennial southeast-flowing cave stream known as 

Eileen’s River passage (Figures 4.10 and 4.11). The water-level elevation is about 163 m 
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(535 ft msl) in the siphon closest to the well and must rise roughly 5 m (15 ft) before it 

can enter a higher “Dark Side of the Moon” passage: a large, circular passage that slopes 

northeast toward Barton Springs.  In well 58-50-411 the water-level elevation generally 

varies from 165.0 m to 165.5 m above mean sea level, which is higher than in the nearby 

flowing stream passage (Figure 4.12).  Blowing Sink Cave and well 58-50-411 lie near 

the general groundwater divide between the Manchaca and Sunset Valley groundwater 

basins. However, a tracer injected at site H was detected in well 58-50-417 across this 

approximate divide within the Sunset Valley groundwater basin. The tracer was not 

detected in well 58-50-417 until after a large rain event and 1 month after the tracer had 

already arrived at Barton Springs through the Manchaca Flow Route.  It is interpreted 

that the limited recharge area and the high hydraulic conductivity of the southeastward 

flowing cave stream causes the water level in the cave stream and well to be maintained 

at a stable elevation. Only under short-term large rain events and associated rising water 

levels within the Manchaca groundwater basin and flooding on Slaughter Creek does the 

southeastward flowing cave stream become overwhelmed and water-filled, such that flow 

is diverted through the upper-level Dark Side of the Moon passage, and into the adjacent 

Sunset Valley groundwater basin. The temporary southward shifting of the groundwater 

divide appears to occur under local overflow conditions (Figure 4.4). 

The hydraulic condition of the Saline-Line Flow Route is gauged from abundant 

monitoring records from well 58-50-301 located near and at times within the Saline-

Water Zone (Figure 4.13). Relative to Barton Springs flow, water levels in the well 

recede rapidly but demonstrate a delayed response on the rising end of the hydrograph.  

Once recharge has ceased, water-levels in 58-50-301 remain relatively static as Barton 

Springs flow declines, then follow a predictable recession until the next recharge event. 

The lack of water-level decline relative to Barton Springs during recession suggests that 

the Saline-Line Flow Route is less transmissive than the Manchaca Flow Route, as 

observed in delayed tracer arrival from Onion Creek to Old Mill Springs (Figure 4.2). 

Hauwert and Vickers (1994) attributed slight water-level responses of well 58-50-301 

after rainfall to be the result of “diffuse flow through smaller pores and fractures” but I 
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now attribute the well’s response to a relatively small and isolated conduit associated 

with the Saline-Line Flow Route.   

Under some overflow (B) conditions (Figures 4.13 and 4.4), Onion Creek recharge 

overwhelms the Saline-Line Flow Route, causing flow to back up and divert all flow to 

the Manchaca Flow Route and a smaller amount to San Marcos Springs.  During high-

flow conditions in May 2005 similar to the previous 2002 injection, eosine tracer was 

again injected into Cripple Crawfish Cave (Site S), but with a different result (Figure 

4.1).  Under these “B” overflow conditions, when the Saline-Line Flow Route is 

obstructed by excess flow, the second or late tracer arrival from Onion Creek injections 

does not occur.  At the time of injection, Onion Creek flow loss was about 0.6 to 0.85 

m3/s (20 to 30 ft3/s), which was considerably lower than the 2.3 to 2.8 m3/s (80 to 100 

ft3/s; Smith et al., 2001) loss normally measured across the Edwards outcrop area. Tracer 

recoveries in unusual locations were interpreted to indicate diversion flow from the 

Mountain City area across Onion Creek to a western secondary flow path of the 

Manchaca Flow Route (Figure 4.4). Another explanation (Smith et al., 2006) for the 

diversion of Onion Creek flow to San Marcos is that the Blanco River flow and San 

Marcos Springs flow were lower during the 2005 traces than during 2002 injections, even 

though Barton Springs flow was about the same flow during both injections. This could 

have allowed southward flows in 2002 but not 2005.  Based on existing tracing and 

water-level data, this relatively rare overflow condition occurs when water depths in well 

58-50-301 are less than 41 m (130 ft), shown as area B in Figure 4.13.  In well 58-50-

301, water depths less than 41 m occurred 944 days over a 5,157-day period from 

November 4, 1991, to November 15, 2006, of daily readings by BS/EACD (or 18% of the 

15 year record). The precise quantification of this overflow condition requires additional 

refinement with additional tracing from Onion Creek, particularly under high-flow 

conditions.   

Other methods are used in wells to detect caves that could be associated with 

preferential flow paths. Well log methods such as downhole camera and caliper logs have 

been applied in the Barton Springs Segment. Airflow commonly is observed blowing into 

or out of wells, although the airflow may cease or greatly diminish under high-flow 
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conditions when the cave discharging the air is submerged. Consequently, the depth of 

the cave can be determined by the water depth at which the airflow ceases, as water 

levels rise at a later date. The airflow depth should be verified by multiple observations 

on different days, because of changes in airflow resulting from temperature and pressure 

differences between the surface and subsurface. Strong airflow in a well is an indication 

of a relatively well-connected conduit and large unsaturated porosity.  Perhaps the most 

direct means of examining caves in wells or boreholes is to drill or excavate a sufficient 

sized borehole connection to the cave, such as Honey Creek Cave, where a cave-radio 

located borehole shaft and well were drilled to intercept a known cave (Veni, 1997), and 

Inner Space Caverns, where a 0.6 m (2 ft) diameter borehole shaft allowed human 

exploration (Sansom and Lundelius, 2005). 

Basing groundwater flow directions on potentiometic surface maps alone can 

yield erroneous results when not verified with groundwater tracing. A potentiometric-

surface mound beneath Onion Creek led Stein (1995) to conclude that groundwater south 

of Onion Creek did not flow to Barton Springs under high or moderate-flow conditions, 

but instead flowed to City of Kyle wells or San Marcos Springs. The potentiometric data 

upon which the interpretation was based were accurate, but widely spaced water-level 

measurements do not show the details necessary to reveal destinations that are revealed 

by tracing (Figure 4.14). Groundwater flow does bifurcate and even trifurcate around 

Onion Creek, but all flow paths lead to Barton Springs except under rare occasions where 

a relatively small portion of flow is directed to San Marcos springs (Figure 4.1; see 

Saline-Water Zone description above).  In this case, the choice of test (potentiometric-

surface mapping versus groundwater tracing) can lead to two different interpretations. 

When a smaller area north of Onion Creek is mapped with a greater density of water-

level measurements supported with geological mapping and groundwater tracing, details 

such as potentiometric troughs are discernible that are not detected with wider-spaced 

measurements (Figure 4.15). 
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4.4 WATER-QUALITY DERIVATION OF FLOW PATHS 
Aquifer geochemistry is only examined superficially herein for the purpose of 

characterizing groundwater flow paths in the Barton Springs Segment. Abbott (1973) and 

Senger (1983) found the Barton Springs Segment to be generally unsaturated with respect 

to calcite and dolomite, while the Saline-Water Zone was supersaturated with respect to 

calcite and dolomite. Geochemical modeling revealed that mixing of these two water 

types decreases the carbonate saturation indices, which could enhance dissolution of the 

Edwards Aquifer along the mixing zone (Abbott, 1973).  Abbott (1973) offered the 

explanation that an undersaturated condition for Barton Springs waters with respect to 

calcite and dolomite resulted from fast groundwater flow and insufficient residence time. 

Garner (2005, see section 4.6) showed that well water-quality in 58-50-211 on the 

western side of the outcrop area became undersaturated with respect to calcite for several 

days following a rain event. 

The differences in sulfate and chloride concentrations between the Barton Springs 

outlets were consistent with the delineation of groundwater basins from tracing data and 

the relative contributions from major flow path sources (Hauwert et al., 2004b). 

Examining specific conductance data from Main Barton Springs for 1999 to 2003, 

Massei et al. (2007) distinguished different source contributions to Barton Springs that 

were interpreted to represent recent recharge, the Saline Water Zone, and the matrix.  The 

relative contributions from these sources vary from year to year. 

Garner (2005) and Garner and Mahler (2007) used major ion data collected by the 

USGS in 26 wells across the Barton Springs Segment to interpret which wells were on 

major and minor flow paths, as well as wells influenced by Trinity Aquifer and Saline-

Water Zone mixing (Figure 4.16). Garner’s major flowpath wells were characterized by 

relatively low specific conductance, diminished Mg/Ca concentration ratios during high-

flow conditions, decreased downgradient Mg/Ca concentration ratios, increased Ca-

HCO3 concentrations, and increased sensitivity to contamination sources. Minor flowpath 

wells were characterized by Garner by decreasing specific conductance during flowing 

creek conditions.  He found that minor flow path wells have a lower vunerability to 

contamination than major flowpath wells as indicated by nitrate nitrogen concentration 
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less than 2 mg/l. His findings are that of 26 randomly-located wells used in USGS 

sampling, four wells intersect major flow paths, five wells intersect minor flow paths, 

five wells across the Barton Springs Segment receive flow from the Saline-Water Zone, 

and six wells receive flow from the Trinity Aquifer. Therefore, Garner’s (2005) 

geochemical designation of wells as being on major flowpaths agrees with the 

interpretation presented in Figure 4.1 for 8 of 10 wells. For 6 of the 10 wells designated 

on major or minor flowpaths were within 1 km of a primary or secondary flowpath 

interpreted on Figure 4.1. It is possible that some wells whose geochemistry suggested 

flowpath influence by Garner and Mahler (2007) are discovered later through tracer 

recovery to be on primary, secondary, or tertiary groundwater flow paths.  Geochemical 

characterization of existing data using the Garner and Mahler (2007) approach may be a 

useful screening tool to identify the optimum wells for monitoring tracer recovery 

because all wells cannot be monitored in any trace. The application of geochemical 

characterization of flow paths is intriguing, brings forward new information, and bears 

further study. 

Geochemical analyses of the Barton Springs Segment have indicated that urban 

degradation is localized to specific areas of the aquifer, along major flow paths, and 

springs (Hauwert and Vickers, 1994; Hauwert, 1995; Barrett and Charbeneau, 1996; 

Hauwert et al., 2004a and b; Garner, 2005; Mahler et al., 2006). Hauwert and Vickers 

(1994) and Hauwert (1995) showed the localization of poor water-quality based on 

elevated indicator bacteria, sediment, trace metals, and organics along the Sunset Valley 

Flow Route.  Hydrocarbon contamination also was detected beneath a site of surface 

petroleum contamination indicating that surface contaminants could be detected in the 

underlying groundwater. Low levels of pesticides have been also detected at sites across 

the aquifer. The City of Austin collected regular samples from Barton Springs and Cold 

Springs and documented anticipated decline in local groundwater with urbanization and 

correlated creek water quality with levels of impervious cover (Johns, 1994; Johns and 

Pope, 1998). These results suggested that poor water quality was a useful criteria for 

identifying flow paths when the contaminants are sufficiently far from the source. 
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Similar to the downstream convergence of injected tracers, point and non-point-

source contamination is more likely to be encountered along a preferential groundwater 

flow path (Hauwert et al., 2004a and b). Because primary flow routes discharge at a 

spring, springs will have more poor water-quality constituents than most wells in the 

same aquifer. Tracing and geochemical data showed greater advective transport to the 

discharge spring than to a well than within a small karst watershed of Bushkill Creek in 

Pennsylvania (Toran et al., 2007).  

Key contaminants also can serve as tracers from source areas along major flow 

paths to their discharge springs. The USGS refined contaminant sampling of the Barton 

Springs Segment to include: (1) consistent annual sampling of wells; (2) sampling of 

selected sites following rain events; (3) the development of very low detection limits and 

sophisticated sampling methods; and (4) the expansion of water-quality and sediment-

quality parameters with the National Water Quality Assessment program (Mahler et al., 

2006). Mahler et al. (2006) and Mahler and Massei (2007) reported that water chemistry 

differences between wells and spring orifices revealed separate flow paths.  Although the 

mean nitrate-nitrogen concentration of Main, Eliza, and Old Mill varied only by 0.05 

mg/l, the difference in concentrations between springs collected after a recharge event on 

the same day suggested that different groundwater flow routes within the same 

groundwater basin were being followed.  Tetrachloroethene and chloroform 

concentrations were similar in Main and Eliza springs and slightly lower in Old Mill 

Springs.  Following storm events, a 5-hour delay in specific conductivity response at Old 

Mill Springs compared to Main and Eliza springs was observed. The nitrate-nitrogen, 

atrazine, simazine, prometon, and bromodichloromethane concentrations in Upper Barton 

Springs always were considerably higher, suggesting a separate and more urbanized 

source area. Chloroform and freon concentration similarities between Upper Barton 

Springs and a well in Sunset Valley suggested a flow path between those areas.  The 

results of this geochemical analysis overall were consistent with flow path and 

groundwater basin interpretations presented in Figure 4.1.  

The presence of persistent and heavy sediment loading in wells and springs has 

proved to be a reliable criterion for the presence of major groundwater flow paths in the 
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Barton Springs Segment. Quinlan (1989) suggested that wells where high turbidity was 

observed after rains were likely sites to recover tracers along fast-flowing groundwater 

flow paths. A turbid plume discharged from Barton Springs following a 10-cm storm in 

1980 (Slade et al., 1986). Other sediment plumes were observed discharging from Barton 

Springs in the 1990s; most were in association with rain events. Sediment-laden wells are 

occasionally encountered that can produce high turbid loads sufficient to fill a number of 

boreholes by as much as 50 m and a municipal water storage tank up to 0.5 m (Hauwert 

and Vickers, 1994). This amount of sediment is too large to originate simply by 

sloughing of adjacent loose materials around a wellbore. Furthermore, the sediment 

largely has a consistent composition of euhedral dolomitic silt, which is correlated to 

specific pulverulic layers in the Kirschberg Member (Mahler, 1997; Mahler and Lynch, 

1999; Lynch et. al., 2004). The occurrence of sediment-laden wells is interpreted to be 

limited to sites where groundwater velocity is sufficiently rapid to transport and erode 

sediment for long distances through the aquifer (Hauwert and Vickers, 1994; Mahler, 

1997).   

The presence of sediment-laden wells was used as criteria for mapping possible 

primary or secondary groundwater flow paths (Figure 4.1). To determine which wells 

qualified as sediment-laden, all BS/EACD well purging files from 1993 to 2000 that 

document changes in field parameters such as turbidity using a calibrated Horiba U-10 

prior to sampling were examined. Turbidity measurements and visual observations 

suggested the presence of sediment was readily distinguishable, even without a detailed 

mineralogical analysis. A threshold of 40 nephelometric turbidity units (NTU) was 

selected to identify sediment-laden wells. Wells were not considered sediment-laden for 

this study if: (1) the turbidity diminished and remained below 40 NTU over the purging 

period; (2) turbidity was observed in association with large declines in water levels 

within the well or even drying of the well; and (3) the sediment appeared to be short term, 

such as during well development shortly after well drilling. It has been observed that 

wells directly on a preferential flow path (such as 58-50-2N3, Figure 4.8) have high 

suspended solids, while others near the flow path may have sediment only occasionally 

and frequently during changing flow conditions. In addition to measurement of turbidity 
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with a field meter, evidence of heavy sediment loading episodes may be seen from 

diminished total well depths, discarded sediment filters, sediment-filled water tanks, and 

piled sediment at well discharge points. Some wells are reported as being unusually 

sediment-laden by a driller or well owner. Typically, well owners and drillers have 

handled the sediment problem to varying degrees of success by installing sediment filters, 

by waiting for seasonal changes, or by plugging the well and drilling a new well.  

4.5. AQUIFER TESTING 
Aquifer testing provides information on the local anisotropy and heterogeneity of 

aquifers.  The shape of the cone of depression formed around tested well fields can reveal 

anisotropy.  The lateral distribution of drawdown also provides insight as to how 

pumping wells are influenced by the major flow routes and the surrounding aquifer.  The 

mapped cone of depression was used to delineate the source area for a well field in a 

karst aquifer of Pennsylvania (Barton and Risser, 1991).  Palmer (1999) mapped the 

highly elongate cone of depression resulting from a 31-hour aquifer test in the carbonate 

Beekmantown Formation of Pennsylvania. A 5-hour aquifer test in West Virginia showed 

the growth of an anistropic cone of depression parallel to the direction of stratigraphic 

strike in a karst aquifer (Jones, 1999).  Hantush (1966a and b) described the growth of 

elliptical cone of depression from well pumping in an anisotropic media.  The major axis 

of the cone of depression lies in the direction of greatest hydraulic conductivity.  Hantush 

warned that using traditional analytical methods that assume isotropic conditions can 

yield erroneous values of transmissivity and storativity.   

In many cases, deviations from typical type curves for confined, unconfined, 

leaky, and/or double-porosity conditions result from boundaries such as recharge, 

barriers, well-bore storage, partial penetration of wells, and interference from other 

pumping wells (Kruseman and deRidder, 1990; Barton and Risser, 1991).  Ogden (1986) 

observed the effects of barrier boundaries, water-filled conduits, and other recharge 

boundaries reflected in deviations from Cooper-Jacob and Theis-type curves in the San 

Marcos area of the San Antonio Segment of the Edwards Aquifer. The cone of depression 

from a pumping well expands and, given time, it may eventually draw from a significant 
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water-filled conduit, causing the rate of drawdown to diminish in a response similar to 

that expected for a test conducted near a recharging creek. Mikels (2001) observed the 

recharge boundary effects of Onion Creek during a test of the nearby City of Buda 

municipal wells in the Barton Springs Segment.   

Fracture (or fissure) flow can be considered as an intermediate flow regime 

between open conduit flow, which is turbulent, and continuum or porous media flow, 

during which Darcian (laminar) flow occurs through small pores within the matrix.  

Various analytical approaches can quantify the hydraulic properties of a fracture flow 

system and evaluate the application of different conceptual models. The cubic law 

assumes that discharge through a fracture is directly proportional to the cube of its 

aperture, and that no significant flow occurs through the matrix (Romm, 1966; 

Witherspoon et al., 1980; Neuzil and Tracy, 1981; Tsang and Witherspoon, 1981).  In a 

double-porosity system that is dominated by matrix and fracture flow, mineral deposition 

on the fracture surface or fracture skins can restrict flow from the matrix into the 

fractures, which can result in a pseudo-steady state which appears as a deflection from a 

standard Theis curve (Moench, 1984).  

Some studies (Razack and Huntley, 1991; Huntley et al., 1992) indicate that 

aquifer testing underestimates transmissivity in heterogeneous alluvial aquifers but 

overestimates transmissivity in fractured aquifers because of well efficiency and 

turbulence. Robins (1993) notes that the transmissivity of a fractured aquifer is 

underestimated because the wells tested do not intersect fractures, fissures, or conduits, 

which are primary elements of regional flow. However, if the wells tested are only those 

that intercept conduits/fissures, then the transmissivity could be overestimated. Rovey 

(1994) suggested that in karst areas, hydraulic conductivity increases with area scale, up 

to some representative elemental volume that represents regional scale.  This is attributed 

to the increasing dominance of the “larger but rarer conduits” in the flow system.  Rovey 

(1994) believed that the regional average hydraulic conductivity value could be obtained 

by averaging a large number of small-scale aquifer tests. 

An explanation for the apparent increase in hydraulic conductivity with scale is 

the focusing of flow along conduits, and the small likelihood of any well producing 
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directly from the few conduits that carry most of the flow, values of transmissivity 

derived from aquifer tests underestimate those estimated by groundwater tracing of the 

conduits where most flow occurs (ASTM, 1995). 

Within the Barton Springs Segment, Alexander (1990) found a general correlation 

between increasing specific capacity measured in 27 well tests, including 6 measurements 

he collected, and decreasing distance from 938 lineaments interpreted by either Charles 

M. Woodruff, Fred Snyder, or Albert Ogden, but no correlation with the 48 lineaments 

interpreted by all three investigators. He found that 10 of the 13 wells with highest 

specific capacities were positioned to the southeast of the nearest lineament. None of the 

13 wells with the lowest specific capacity values were located within 305 m (1000 ft) 

southeast of a lineament. 

4.5.1 Aquifer Test Analysis Methodology 
Since 1989, the BS/EACD has required aquifer testing of permitted wells in order 

to measure the potential for impacts on nearby wells and the hydraulic parameters of the 

aquifer. After 1993, the tests involved measuring existing wells radially around the test 

well at varying distances up to 4 km away (BS/EACD, 1994). The author participated on 

behalf of BS/EACD in the design, monitoring, and independent analysis of 10 of these 

tests up to the year 2000, and three after 2000. The well owner is responsible for selecting 

a period for the test when rain events, flowing creeks, and local well interference are 

minimized and the well fields are fully recovered from previous pumping.  The 

BS/EACD-required aquifer tests rely only on existing wells where nearby well owners 

volunteer cooperation. Further, not all tests have sufficient maximum drawdown data to 

map the cone of depression in detail.   

I analyzed the data collected during all of the tests in which I participated. The 

maximum drawdown for each monitored well during the aquifer tests was calculated 

where sufficient measurements were made. In some cases it was necessary to correct 

drawdown for background rise or fall of water levels. During many tests, one of the 

monitored wells was being pumped by a resident or was influenced by another local high-

capacity well at some point during the test. This well interference required corrections or, 
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in some cases, preventing useful data from being collected from the monitored well. A 

common challenge is collecting sufficient background water-level data in each monitored 

well prior to aquifer testing to clearly show whether any drawdown was created by the 

test well. Monitoring of the recovery phase after the test well was shut off allowed 

verification when increases in water levels of the monitor wells were observed. Although 

recovered water levels were not always the same as water levels measured prior to the 

test, when properly corrected for background fluctuations, the total recovery should 

approximately reflect the total drawdown. A map of the cone-of-depression surface was 

prepared by mapping of maximum drawdown observed in wells around the pumping 

well. Local anisotropy was measured as the ratio of minimum to maximum distances 

from the pumping well to a selected drawdown contours (Figure 4.17). The aquifer test 

results are summarized in Appendix E. The detailed test data are on file at BS/EACD. 

Well efficiency is affected by the cased intervals, the materials used in a filter 

pack and well screen, and drilling mud caked along the borehole (Kresic, 1997). Mace 

(1997) found that typical corrections to drawdown for well efficiency were unrealistically 

high for pumping tests in the Edwards Aquifer, to the extent that corrections to 

drawdown exceeded measured drawdown 10 to 20% of the time.  The vast majority of 

Edwards Aquifer wells are open-hole construction and contain large voids, so the drilling 

fluids are unlikely to plug water-producing intervals.  However, most aquifer tests focus 

on high-capacity water-supply wells that are cased and screened and, therefore, poor 

design could affect by well efficiency. No measurement of well efficiency was made in 

the tests reported here, which requires drawdown measurement at different pumping rates 

(or step-drawdown test), so it is possible that in some tests the transmissivities are 

underestimated.   

Analytical modeling was performed on the test results from wells that were 

relatively free of interference effects to measure the aquifer parameters of transmissivity 

and storativity.  Most of the pumping and recovery phases of the tests were examined 

using analytical solutions, including Theis (1935), Cooper-Jacob (1946), and Moench 

(1984). A description of these methods and their assumptions are provided in Appendix 

D. The software Aqtesolv for Windows was used to calculate most of the transmissivity 
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and storage values. This allowed simultaneous correction for partial penetration and 

varying pumping rates (Duffield, 2000).  On tests performed within the artesian area, 

most wells are partially penetrating to some extent; consequently, the transmissivity may 

be underestimated, particularly where wells did not penetrate through the Kirschberg 

Member.   

From 1993 to 2000, about 160 specific-capacity measurements were collected 

from wells throughout the Barton Springs Segment (Appendix F). Most of these 

measurements were collected from wells during groundwater sampling or in response to 

concerns of water loss for well owners. Water levels were measured before and after 

pumping using an electric marked conductor line (or eline). The test typically lasted for 

20 to 40 minutes, although some were as short as a few minutes or as long as several 

hours. A longer duration allows the well to reach its maximum drawdown. Therefore, 

duration is likely the best single gauge of the accuracy of the test. Short test durations 

underestimate drawdown and overestimate specific capacity and transmissivity. On rare 

occasions, the well was already pumping on arrival, in which case the pumping rate and 

pumping water level were measured before the pump was shut off so the water levels 

could recover. Pumping rates for specific-capacity tests most often were measured by the 

time required to fill a 20-l (5-gal) bucket. In other cases, a dedicated flow meter was used 

to measure the volume of water discharged over a 1-minute interval. Nearly all specific-

capacity measurements were collected from domestic wells supplying single households. 

The measurement of specific-capacity (pump rate/drawdown) was converted to 

transmissivity using empirical relations developed by Mace (1997) from other Edwards 

Aquifer pumping tests: 

 

T= Transmissivity = 0.76 * (Specific capacity)1.08     (12) 

 

where both T and specific capacity are in m2/day 

 

The distance from wells with aquifer test and specific-capacity measurements to 

closest mapped primary or secondary groundwater flow paths was measured. Because the 
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saturated thickness may influence the relation between distance to flow path and 

transmissivity, the hydraulic conductivity values were calculated by dividing 

transmissivity by estimated saturated thickness: 

 The relation between hydraulic conductivity and distance to nearest estimated 

flow path is affected by:  

1) The fact that the location of the groundwater flow paths shown on maps in 

some areas is not known with great precision. Actual locations could be a 

hundred meters or more from estimated locations where well or spring data 

are scarce. 

2) The existence of other primary, secondary, or tertiary flow paths that are not 

yet known or mapped. 

3) The variability of the hydraulic influence of nearby flow paths, which are 

affected by flow conditions in the unconfined Edwards outcrop area.  Water-

bearing conduits connecting flow paths and wells may dry during low-flow 

conditions. 

4) The accuracy of the transmissivity measurement and (for hydraulic 

conductivity) the estimated saturated thickness. 

5) The fact that most specific-capacity test wells are pumped at low rates of 

about 50 m3/day for short periods of time and, therefore, test only the local 

aquifer conditions. 

The distance from the wells to the nearest flow primary or secondary flow path were 

plotted against measured hydraulic conductivity values and evaluated for linear 

correlation.   

Deviations in pumping and recovery levels from type curves often reflected the 

presence of barrier and recharge boundaries, and assisted in characterizing the local 

aquifer conditions.  To test for recharge or barrier boundaries, the drawdown data were 

plotted versus the log of elapsed time to calculate Cooper-Jacob approximation for 

transmissivity and storage. Deviations from straight-line trends with increased drawdown 

were interpreted as barrier boundaries, while decreasing drawdown anomalies were 

interpreted as recharge boundaries. Barrier boundaries are expected where the cone of 
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depression reaches a fault that juxtaposes lower permeability units.  Recharge boundaries 

include primary and secondary groundwater flow paths and flowing creeks on the 

Edwards outcrop area near the pumping well.  Recharge boundaries were interpreted 

based on the time of deviations on semilog plots, restriction of the cone of depression in 

observation wells, flowing creeks in the Edwards outcrop area, and mapped primary or 

secondary groundwater flow routes.  Barrier boundaries were estimated based on the 

aquifer framework derived from the geologic map (Chapter 2) and mapped groundwater 

flow paths (Figure 4.1). 

4.5.2 Aquifer Test Results 
The hydraulic conductivity of nine aquifer test wells decreases exponentially with 

distance to primary groundwater flow paths ( R2 correlation of 0.82; Figure 4.18). The 

correlation between 10 wells to the closest secondary mapped flow routes also has an 

exponential correlation (R2 = 0.8).  

The 41 specific-capacity tests closest to mapped primary flow paths and 98 

specific-capacity tests closest to secondary flow paths individually show no correlations 

with hydraulic conductivity.  The lack of correlation probably reflect that small domestic 

well systems do not draw sufficient flow to show the influence of major flow paths; that 

the wells tested are influenced by much smaller groundwater conduit, fissure, fracture, 

and matrix features than other wells, or indicate that the accuracy of the specific capacity 

tests are too poor for this analysis. 

 A few aquifer tests selected for more detailed examination of results are 

described below.  

4.5.2.1 Cimarron Park 1996 aquifer test 
 The Cimarron Park test ran for 9.4 hours on September 11, 1996, at a pumping 

rate of 3,300 m3/day (600 gpm, Vickers., 1996, Figure 4.19).  Measured water-level 

declines in the pumping and observation wells are presented in Appendix E. At the time, 

the Barton Springs Segment was in a drought. Barton Springs flow was 1 m3/s (35 ft3/s) 

on September 11, 1996. Although the Cimarron Park system is located well within the 

mapped artesian area, water-level declines brought the area to unconfined conditions.  
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The anisotropy of the Cimarron Park cone of depression is 0.33 (1:3) to 1.2 (1:8; Figure 

4.19).  During this test, 0.6 meter (1.7 ft) of drawdown was clearly observed 2 km (1.25 

mi) to the northeast. To the southwest and west, drawdown appeared to be restricted. 

Tracer injections in Onion Creek (Site M, Figure 4.1) south of the Cimarron Park system 

were recovered in the westernmost well monitored for drawdown in the 1996 aquifer test, 

indicating that a flow path tributary to the Manchaca Flow Route is present that would 

potentially restrict drawdown to the west. 

A semi-log plot of the time versus drawdown data suggests a distinct increase in 

transmissivity 90 minutes into the test, which resembles a recharge boundary (Figure 

4.20). Using a Cooper-Jacob (1946) analytical solution, the transmissivity increased from 

about 450 m2/day to 550 m2/day. The recharge boundary is interpreted to be the primary 

groundwater flow route to the west (Figure 4.18).   

4.5.2.2 Creedmoor Maha Aquifer Tests 
The 2001 Creedmoor Maha Site 1 test ran for 4 days beginning June 5, 2001 at a 

rate of 6,770 m3/day (1,240 gal/min) diminishing to 6,500 m3/day (1,190 gal/min). 

Analysis of this test was complicated by recovery of the pumping well from previous 

pumping, interference from a local pumping well, and changing water levels in monitor 

wells prior to the test.  As a result, the maximum drawdown in observation wells was 

subject to interpretation of which corrections to apply. Maximum drawdowns interpreted 

here are nearly always greater than drawdowns presented by Collier Consulting Inc 

(2001). The water-level measurements and drawdown interpretations are presented in 

Appendix E. The pumping well could not be monitored during the test, so drawdown 

within the wellfield was based on an observation well (58-50-850) within the same well 

field, which declined 3 m (15 ft, corrected to 7 m or 21 ft for incomplete recovery) during 

the test.  The resulting mapped cone of depression is oriented northeast-southwest, 

parallel and proximal to local mapped faults (Figure 4.21). Beyond the first 20 minutes of 

well-bore depletion, the pumping wells showed three increasing shifts in transmissivity, 

interpreted as drawing from the local aquifer for the first 80 minutes, and thereafter the 

cone of depression extended to a secondary flow path (Figure 4.22). After about 1,100 
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minutes into the test the drawdown essentially ceased in the pumping field, as the cone of 

depression likely reached the Saline-Line Flow Route to the east. The cone of depression 

continued to expand over the duration of the test in area monitoring wells. Based on the 

data from 20 monitored wells the anisotropy of the cone of depression is 1:4 to 1:8.  By 

the end of the test, the cone of depression grew such that 1.5 m (5 ft) of drawdown was 

measured in two monitored wells about 3.2 km (2 mi) to the southwest of the pumping 

wells.  A similar 1.5 m (5 ft) of drawdown occurred only a half mile away northeast of 

the pumping wells.  Its cone of depression is subparallel to and overlapping with the cone 

of depression interpreted from the 1996 aquifer test of the Cimarron Park well system. 

The Creedmoor well site 2 shows ranges of transmissivity (resulting from 

pumping interference effects and possible background water-level declines) from about 

472 to 633 m2/day (38,000 - 51,000 gpd/ft) and a storativity of 0.03 to 0.045. The cone of 

depression is suppressed to the east, presumable from the nearby Saline-Line Flow Route. 

4.5.2.3 Sunset Valley 1997 Aquifer Test 
A test of the Sunset Valley municipal well was conducted on May 14, 1997, by 

the staff of Sunset Valley with monitoring assistance and verification from BS/EACD 

staff. The well was pumped at 820 m3/day (150 gpm) for 510 minutes. A maximum water 

depth of 14.5 m (48 ft) was measured in the pumping well.  The relatively low pumping 

rate and lack of local wells limited definition of the cone of depression (Figure 4.24). 

Three deflections appeared in the time drawdown curve, interpreted to reflect the 

transmissivity of the local aquifer, the nearby Sunset Valley Flow Route, followed by a 

third deflection that may reflect the cone of depression reaching a secondary groundwater 

flow route or flowing Barton Creek (Figure 4.25). 

4.5.3. DISCUSSION 
Primary and secondary flow paths control the hydraulic conductivity of the 

Barton Springs Segment. Hydraulic conductivity (K in m/day) declines by: K = 340 x L-

10 with distance (L in m) away from primary or secondary flow path.  The drawdown 

responses of the Cimarron Park, Creedmoor, and Sunset Valley well systems are 
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anisotropic inhibited by local primary and secondary flow paths that serve as recharge 

boundaries. 

Recession analysis of springs or water levels is another tool for characterizing 

aquifer properties.  Hydrograph recessions from three karst or fractured rock sites in three 

states were used to estimate the matrix transmissivity (Powers and Shevenell, 2000).  The 

recession values were compared to transmissivities from aquifer and slug tests.  

Advantages of the recession method include: (1) the aquifer parameters could be obtained 

under natural conditions without stressing the aquifer and (2) no pumping was necessary.  

The hydrograph recession and aquifer test estimates of matrix transmissivity agreed very 

well. Based on recession analysis Senger (1983) estimated a range of transmissivity 

values from six wells in the Barton Springs Segment to be 0.10 to 0.40 m2/sec (Table 

4.2). Storativity for these six wells ranged from 0.001 to 0.023.  Based on the change in 

storage at Barton Springs during one recession period, he estimated an overall storativity 

of 0.0075. 

Transmissivity measured from well cores, water-level recession analysis, aquifer 

tests, and tracer tests can be compared for scale effects (Figure 4.26). Mace and Hovorka 

(2000a) measured permeability in well cores at values from 8.4x10-6 to 8.3 m/day with a 

arithmetic mean of 1.3x10-3 m/day. The scale of the tracer tests is simply the distance 

between injection and discharge sites. For comparison purposes the scale of the well 

cores, aquifer tests, and recession analysis is assumed to be 1 m, 2 km, and 5 km, 

respectively. It cannot be ruled out in this study that different methods (permeameter 

tests, aquifer tests, water-level recession, and tracer tests) account for some of the 

apparent scale differences (ASTM, 1995; Halihan et al., 2000; Kiraly, 2002).   
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4.6.  CONCLUSIONS OF THE GROUNDWATER-FLOW ASSESSMENT 
The Barton Springs Segment is composed of three groundwater basins, each with 

identified prominent preferred groundwater flow routes.  Primary and secondary 

groundwater flow routes are highly transmissive and are where most transport is 

localized. The primary and secondary flow routes are associated with potentiometric-

surface mounds during surface recharge periods and longer-lived potentiometric-surface 

troughs during recession periods, during which the local aquifer storage drains back in 

the flow routes.  The locations of primary and secondary flow routes are best determined 

through groundwater tracing but are supported from other criteria, including 

potentiometric troughs and mounds, sediment-laden wells, geochemistry, aquifer testing, 

geologic mapping, creek-flow measurements, and cave mapping near the phreatic zone.  

Groundwater tracing is an essential tool for verifying the flow route locations, 

advective velocity, dispersion, and discharge sites for recharge areas under tested flow 

conditions. The advective transport was 1,000 times greater than the hydrodynamic 

dispersion in five groundwater traces across the Barton Springs Segment.  

Preferential groundwater flow routes are delineated based on:  

(1) tracer recovery sites from injections a kilometer or more away; 

(2) potentiometric surface mounds and troughs; 

(3) groundwater samples with heavy sediment loads;  

(4) groundwater samples with contamination is detected sufficiently far (such as 

more than 2 km) from its source;  

(5) recharge features of major recharge importance, particularly creek swallets 

and large upland internal drainage basins;  

(6) wells with high transmissivity;  

(7) spring discharge sites;  

(8) areas of high head variability within the artesian area; and 
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(9) areas of subdued head variation in the unconfined portion of the aquifer during 

recession or minor recharge periods.  

The aquifer-testing results of the Cimarron Park and Creedmoor well systems 

show anisotropy ranging which is between 1:4 and 1:8.  The direction of greatest 

transmissivity parallels local faulting and preferential groundwater flow routes oriented 

northeast-southwest.  Measured cones of depressions and drawdown shifts on semi-log 

plots consistently show increasing transmissivity towards and along secondary and 

primary groundwater flow paths. As pumping progresses in the karst aquifer, the cone of 

depression expands primarily along conduits hydraulically connected to the pumped well.  

Preferred groundwater flow paths represent the convergence of groundwater flow through 

a few master conduits.  Three tested pumping system wells are not directly intercepted by 

a primary or secondary flow-route conduit, as suggested by lack of recovery during 

separate tracer tests, yet each of these wells is influenced by these flow routes after 

sufficiently long pumping periods.  Hydraulic conductivity (K in m/day) is highest along 

primary and secondary flow paths and declines with distance (L in m) away from the 

flowpaths by: K = 340 x L-10.   

 

 



Table 4.1. Summary of tracer injections.
  Injection Barton Springs   Tracer Mass Mass Min. Distance First Detection Discharge Best Report

Site Phase Site Name Watershed Date Flow Tracer   OUL mixture Recovery  to Discharge at Discharge Site Source

(cfs) (m3/s) (lbs) (kg) (miles) (km) (days)

PHASE I  

A 1 Mopac Bridge Barton Creek 8/13/1996 18 0.51 RWT 10 4.5 59% 3.4 5.5 5 Cold Hauwert et al. , 2004a

B 1 Mt Bonnell Fault Barton Creek 8/13/1996 18 0.51 Fl 10 4.5  --- 2.7 4.3 6 Cold Hauwert et al. , 2004a

PHASE II

A' 2 Mopac Bridge Barton Creek 8/5/1997 107 3.03 Eosine 5 2.3 77% 3.4 5.5 0.79 Cold Hauwert et al. , 2004a

C 2 Dry Fork Sink  Williamson Creek 6/17/1997 101 2.86 Fl 3 1.4 4.2% 4.8 7.7 <1.25 Barton Hauwert et al. , 2004a

F 2 Brush Country Williamson Creek 6/24/1997 110 3.12 RWT 10 4.5  --- 5.3 8.5 <8 Cold Hauwert et al. , 2004a

PHASE III

H 3 Brodie Sink Slaughter Creek 4/27/1999 83 2.35 Eosine 7 3.2 7.4% 8.6 13.8 1-2 Barton Hauwert et al. , 2004a

J 3 Midnight Cave Slaughter Creek 4/27/1999 83 2.35 RWT 5 2.3 16.6% 11 17.7 7-8 Barton Hauwert et al. , 2004a

D 3 Whirlpool Cave Williamson Creek 6/16/1999 68 1.93 Eosine 5 2.3 0.07% 5.6 9.0 3-4 Barton Hauwert et al. , 2004a

E 3 Westhill Drive Barton Creek 6/16/1999 68 1.93 SRB 2 0.9 7% 2 3.2 0.4 Barton Hauwert et al. , 2004a

PHASE IV

I 4 Hobbit Hole Bear Creek 9/28/1999 37 1.05 Fl 5 2.3 0% Hauwert et al. , 2004a

K 4 Spillar Ranch Bear Creek 9/28/1999 37 1.05 RWT 10 4.5 0.0002% 1.3 2.1 22-28 well 58-50-742 Hauwert et al. , 2004a

L 4 Dahlstrom Cave Little Bear Creek 9/28/1999 37 1.05 Eosine 10 4.5 0.7% 14.9 24.0 21 Barton Hauwert et al. , 2004a

PHASE V

M 5 Antioch Cave Onion Creek 3/28/2000 26 0.74 RWT 20 9.1 <0.0001% 3.3 5.3 8-22 well 58-58-128 Hauwert et al. , 2004a

N 5 Barber Falls Onion Creek 3/29/2000 26 0.74 Fl 10 4.5 0.04% 15.7 25.3 14-16 Barton Hauwert et al. , 2004a

P 5 Marbridge Sink Bear Creek 3/28/2000 26 0.74 Eosine 20 9.1 <0.001% 11 17.7 36-43 Barton Hauwert et al. , 2004a

PHASE VI

G 6 Loop 360 Barton Creek 6/23/2000 61 1.73 Pyranine 5 2.3 1.1% 3.3 5.3 <2 Cold Hauwert et al. , 2004a

Q 6 Tarbutton Cave Blanco River 8/3-5/2000 29 0.82 Fl 15 6.8 0% Hauwert et al. , 2004a

O 6 Crooked Oak Onion Creek 8/12/2000 28 0.79 Eosine 25 11.3 13% 18.6 29.9 23 Barton Hauwert et al. , 2004a

R 6 Recharge Sink Slaughter Creek 10/6/2000 24 0.68 SRB 12 5.4 0% Hauwert et al. , 2004a

M' 6 Antioch Cave Onion Creek 11/21/2000 81 2.29 RWT 24 10.9 <0.001% Hauwert et al. , 2004a

PHASE VII

M'' 7 Antioch Cave Onion Creek 8/2/2002 98 2.78 Fl 25 11.3 80% 14 22.5 7.1 Barton Hunt et al., 2004

S 7 Crippled Crawfish Onion Creek 8/6/2002 99 2.80 Eosine 35 15.9 1% 17.5 28.2 3.5 Barton Hunt et al., 2004

PHASE VIII

T 8 Hoskins Hole Onion Creek 5/4/2005 104 2.95 SRB 35 15.9 0.0% Smith et al., 2006

S' 8 Crippled Crawfish Onion Creek 5/4/2005 104 2.95 Eosine 35 15.9 5.2% 17.5 28.2 2.4 Barton Smith et al., 2006

U 8 HQ Flat Cave Slaughter Creek 5/5/2005 103 2.92 RWT 30 13.6 41.7% 9.5 15.3 4.1 Barton Smith et al., 2006

K' 8 Spillar Ranch Sink Bear Creek 5/5/2005 103 2.92 Fl 20 9.1 10.5% 11.5 18.5 3.3 Barton Smith et al., 2006

PHASE IX

9a 9 Barton Hills Trib Barton Creek 3/1/2006 31 0.88 Fl 10 4.5 not calc. 0.7 1.1 not calculated Barton report pending

9b 9 Skunk Hollow Barton Creek 3/3/2006 31 0.88 RWT 25 11.3 not calc. 1.9 3.0 not calculated Cold/Barton completion 

9c 9 Seismic Wall Barton Creek 3/6/2006 31 0.88 Eosine 50 22.7 not calc. 2.8 4.5 not calculated Cold/Barton of Barton Creek

9d 9 Frech well Barton Creek 3/30/2006 31 0.88 SRB 0.0 0.0% traces

PHASE X

10a 10 Hangtree Slaughter Creek 4/10/2007 96 2.72 Eosine 30 13.6 not calc. 14 23.2 3-4 Barton report to be

10b 10 Sandbur Bear Creek 4/11/2007 96 2.72 RWT 45 20.4 not calc. 11 18.1 2.7 Barton completed 

10c 10 Bear Creek Tabor Bear Creek 5/1/2007 96 2.72 Fl 5 2.3 not calc. 12 19.4 2-3 Barton by COA/BSEACD

10d 10 Wildflower Cave Slaughter Creek 4/9/2007 96 2.72 SRB 30 13.6 not calc. 10 16.1 2.46 Barton in 2009

recovered only in wells

not recovered (trapped in mud)

    not recovered

not recovered at San Marcos or Barton Springs

not recovered

not recovered
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Table 4.2. Tracer precision and accuracy. 

Tracer Normal Acceptable Detection Practical Precision
Emission Wavelength  Limit Quantity Limits 

Range (nanometers) (parts per Limits (PQL) (RPD)

billion) (ppb) (%)

Elutant Extractions from Charcoal Receptors

Fluorescein 510.7 to 515.0 0.01 0.03 26-34

Eosine 533.0 to 539.6 0.035 0.0105 29-36

Rhodamine WT 561.7 to 568.9 0.275 0.825 37-49

Sulforhodamine B 567.5 to 577.5 0.15 0.45 35-46

Pyranine 499.1 to 503.9 0.055 0.165 **

Water Samples

Fluorescein 505.6 to 510.5 0.0005 0.0015 1.7-2.7

Eosine 529.6 to 538.4 0.008 0.024 3-4.5

Rhodamine WT 569.4 to 574.8 0.05 0.15 4.5-6

Sulforhodamine B 576.2 to 579.7 0.04 0.12 4.2-5.5

Pyranine* 501.2 to 505.2 0.03 0.09 **

* pH adjusted water with pH of 9.5 or greater.

** insufficient data for generalizaton.

All data provided by Ozark Underground Labs, Protem, Missouri
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 Injection Site  K S U E BS Wel l *

Feature Name Units Spillar Ranch Crippled Crawfis h HQ Flat S ink Westhi ll 58-42-903

Distance to Barton Springs (km) 19 29 16.8 2.6 0.061

Dye Fluores cein  Eosine RWT*** SRB** RWT***

Mass (lbs) 20.0 35.0 30.0 2.0 0.26

(kg) 9.1 15.9 13.6 0.9 0.1

Inj Date/Time 5/5/05 13:15 5/4/05 15:00 5/5/05 9:00 6/16/99 19:00 Mar-82

Initia l Arrival (Main Barton) (days) 3.28 2.38 4.13 0.42 0.01

Mean Residence Time (days) 9.7 2.0 5.4 0.8 0.1

MeanTracer Velocity km /day 2.0 14.7 3.1 3.1 0.5

Time to Peak (days) 4.45 2.54 4.79 0.63 0.05

Barton Spr. Flow (USGS) (cfs) 104 103 104 68 47 + 4

Mass Recovered 

Main Barton (kg) 1.00 0.84 3.00 0.11 0.14

Eliza (kg) 0.27 0.17 0.49 Added above  ---

Old Mill (kg) 0.11 0.05 0.21 0.007  ---

Upper Barton (kg) 0.00 0.00 0.00 0.00  ---

Total Rec. @ Barton Spr. (%) 15% 7% 27% 13% 115%

Chatwin Value (s
1/2

) 3,900 6,100 8,900 1,000 67

Long. Dispersion (Chatwin) (m
2
/s ) 5.9 5.7 0.9 1.7 6.6E-08

Peclet Number (m
2
/hr) 1,747 21,008 16,231 1,314 140,684,644

Potentiometric diff. (m ) 108 85 82 5 0.3

GW Gradient 0. 0057 0.0029 0.0049 0.0019 0. 0049

Hydraulic Conductivity (m /s) 0. 0040 0.0580 0.0073 0.0188 0. 0013

Transmissivity (m
2
/day) 420,300 6,108,000 774,000 1, 980,000 135,000

* C alc ulated from injec tion and breakthrough inform ation repor ted by  Senger (1983)

**Sulforhodam ine B

 ***Rhodam ine W T

Table 4.3. Hydrologic parameters measured from selected tracer tests. 
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Table 4.4. Transmissivity values from water-level recession analysis. 

Well T (m2/s) T (m2/day) S*

58-50-216 0.17 14,688 0.023

58-50-301 0.1 8,640 0.012

58-50-518 0.14 12,096 0.003

58-50-704 0.14 12,096 0.001

58-50-801 0.14 12,096 0.003

58-50-219 0.4 34,560 0.001

 

average 0.18 15,696 0.0075

* Storativity  
 
From Senger (1983) 
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Figure 4.1. Groundwater flow routes: moderate to high-flow conditions. The flow paths
are interpreted based on criteria including sites of tracer recover; major creek flow-loss;
sediment-laden wells; poor water-quality originated from distant sources; potentiometric 
troughs and mounds; geologic faults, the Saline-Water Line; and differences in tracer 
concentrations in wells and springs. Numbered injection sites have not been analyzed
to date.
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Figure 4.2.  Delayed arrival of tracers to Old Mill Springs. Following a 2000 trace 
from Site O on Onion Creek, the tracer is not detected at Old Mill Springs until 
more than 10 days after initial arrival at Main and Eliza Springs.  Weekly 
charcoal receptors from Old Mill Springs show no detection of eosine prior to 
September 6, 2000, only borderline detection until after September 13, 2000 and 
peak eosine concentrations the week of September 20 to 28, 2000 (Hauwert et 
al., 2004a, Appendix A-VI-14). This delayed response is interpreted to result 
from a  bifurcation of flow paths from Onion Creek to the Saline-Line Flow Route 
(to Old Mill Springs) and the faster Manchaca Flow Route (to Main and Eliza 

3 3Springs). Barton Springs Low-flow conditions of 0.82 m /s (28 ft /s) were 
occurring during the August 12, 2000  injection at Site O.
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Figure 4.3.  Tracer breakthroughs from Manchaca Flow Route. Following injection at Site K within the Manchaca GW 

Basin north of Onion Creek and west of the Manchaca Flow Route, tracer concentrations at Eliza Springs are greater 

than at Main Barton and Old Mill Springs, suggesting dilution of Main and Old Mill Springs by other sources. Here the 

dilution is attributed to flows from the Saline-Line diluting Old Mill and Main Barton springs, as well as separate flows 

from the Sunset Valley Groundwater Basin diluting Main Barton Spring. No fluorescein was detected at Upper Barton 

Springs during this trace.
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Figure 4.4. Mapped Groundwater Flow Routes: Overflow Conditions.
Under some excessive recharge conditions, certain flow paths become 
backed up and flow is diverted to other conduits. The groundwater divide 
between the Sunset Valley and Manchaca Groundwater basins may shift 
to Slaughter Creek. The Southern Divide shifts north to portions of Onion 
Creek. The Saline-Line Flow Route appears to become blocked under 
some overflow conditions.
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B

Dye

Figure 4.5. Cold Springs Groundwater Basin Source Area. Groundwater tracing 
from 1996 to present defines the Cold Springs . Senger (1983) 
found water-level responses in wells 58-50-216 and 58-42-915 to the draining of 
Barton Springs pool. however water levels in 58-42-913 did not respond. Traces 
A, G, F, 9b, and 9c discharged from Cold Springs. Tracer B was recovered in the 
Colorado River just downstream of Cold Springs. Traces 9a and E discharged 
from Barton Springs.

groundwater basin



Figure 4.6. Chatwin extrapolations from the early tracer arrivals are used to 
extrapolate Chatwin intercept values for zero elapsed time. 

190

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000 6000 7000

Elapsed Time (min)

(a) Chatwin Plot of Longitudinal Dispersion

Spillar Ranch Fluorescein Trace

HQ Flat RWT Trace

Cripple Crawfish Eosine Trace

1999 Westhill Site E Trace

1982 Barton Springs Well (Senger, 1983)

8900

6100

3900

1000

67

1
C

h
a
tw

in
 V

a
lu

e
 (

s
/
)

2



 

Potentiometric mound 
associated with GW flow route 
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Figure 4.7. Hypothetical groundwater flow paths. During flowing creek or upland 
precipitation scenario A, mounds potentially form below the major recharge 
sources (swallets and internal drainage basins). Potentiometric mounds also 
potentially form along preferential groundwater flow conduits. The recharge 
waters are dispersed laterally into the aquifer and to discharge springs. Under 
scenario B, the recharge sources are depleted and potentiometric troughs form 
along the preferential groundwater conduits and draws storage from the aquifer. 
Note that the well draws flow from the preferential groundwater conduit in 
scenaio A but stored water or groundwater from other sources under scenario B.
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Figure 4.8. Potentiometric-Surface Trough of Sunset Valley Flow Route.
Water levels measured in July 1993 indicated a 13-m-deep potentiometric trough 
that initially identified the Sunset Valley Flow Route (Hauwert and Vickers, 1995). 
The heavily sediment-laden wells here were found to be pulverulitic sediment 
naturally eroded by rapid groundwater velocities (Mahler, 1997). Tracing 
conducted at site C was recovered in several wells in the Sunset Valley area and 
Upper Barton and Main Barton Springs. Some key wells, such as 58-50-2N3 
were plugged prior to the 1997 trace. Figure modified from Hauwert and Vickers, 
(1995) and Hauwert et al. (2004a.)



Figure 4.9. Correlation of water-level elevations in 58-50-2N3 and 58-50-301.
Water-level changes in a well can be used to estimate the elevation and height of a 
partially water-filled cave. Well 58-50-2N3 appears to be near the Sunset Valley 
Flow Route, based on anomalous sediment deposition filling its uncased interval 
and low water-level elevation (Figure 4.8). When water levels in well 58-50-2N3 
exceed 133 m msl, its water levels change 10 m while associated water levels in 58-
50-301 vary by only 4 m. This response can be explained by a water-bearing cave 
located near 58-50-2N3 at least 2 m high with roof elevation at 133 m msl or slightly 
lower. When water levels exceed 133 m msl in well 58-50-2N3, the local cave is 
completely filled and the local aquifer behaves more like a confined aquifer well 
similar to well 58-50-301.
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H

Figure 4.10. Groundwater flow paths interpreted near Blowing Sink Cave. Eileens River 
cave stream flows perennially south, presumably towards an eastward flowing secondary 
flow path of the Manchaca groundwater basin.  Tracers injected at site H reached Main, 
Eliza, and Old Mill Springs within 30 hours after injection. Yet a month after injection, 
following heavy rain and local flooding, the tracer was detected in well 58-50-417. That this 
dye was not detected at Upper Barton Springs or other flow path wells monitored in the 
Sunset Valley groundwater basin is interpreted to mean that under overflow conditions, the 
groundwater divide shifts south to Slaughter Creek. The amount of diverted flow was 
relatively small following the H injection.
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Figure 4.11. Blowing Sink Cave Cross Section.
Cross section cut south to northeast along the trend of Blowing Sink Cave, extending to the water table. During 
infrequent inspections when the cave is not flooding, Eileens River flowing cave stream can always be observed 
flowing south, even during droughts. During local overflow and surface flooding conditions, flow appears to rise 
into the Dark Side of the Moon passage, causing a reversal of flow to the northeast. The cave cross section is 
modified from Blowing Sink Cave map by Russell (1996). Hydrostratigraphic units from Blowing Sink measured 
section by Nico Hauwert in 1995 (Appendix C).
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Figure 4.12 Water-level variation in well 58-50-411. Well 58-50-411 is located about 
230 m south of the mapped extent of Eileen’s River cave stream in Blowing Sink. 
Based on infrequent observations during nonflooding conditions, Eileen’s River cave 
stream flows southeast perennially and has a water elevation of about 163 m (535 ft) 
above mean sea level. Well 58-50-411 is normally downgradient of Eileen’s River 
cave stream, yet has a higher and relatively constant water level, generally varying 
between 165.0 and 165.5 m above msl. When water levels in Blowing Sink Cave 
exceed about 168 m above msl, flow from Eilleen’s River backs up into the Dark Side 
of the Moon passage and groundwater flow reverses to the northeast into the Sunset 
Valley groundwater basin. This groundwater reversal may account for the late 
appearance where dye injected at Site H appeared in another well (58-50-417) to the 
northeast after heavy rains and a month after the dye arrival at Barton Spring outlets 
supported by the Manchaca groundwater basin.  
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Figure 4.13. Saline-Line water levels and Barton Springs flow. Well 58-50-301 
water-level data from BS/EACD and TWDB reflect conditions of Saline-Line Flow 
Route when compared to Barton Springs flow reported by USGS. Condition A 
reflects normal delayed response in the well following recharge and recession 
cycles of Onion Creek. Recession along the D and A boundary reflects the drying 

3of contributing area contributions below 0.03 m /s. Condition B reflects overflow 
conditions under which recharge exceeds the capacity of the the Saline-Line Flow 
Route resulting in diversion of some Onion Creek flow to San Marcos Springs. 
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Figure 4.14. 1994 Potentiometric-Surface Map Along Onion Creek. Based on 
potentiometric-surface data alone, a groundwater divide between San Marcos 
Springs and Barton Springs was interpreted to follow Onion Creek (Stein, 
1995). However, later groundwater tracing showed that under most (low to high) 
flow conditions, the potentiometric mound actually corresponds to a bifurcation 
between the Manchaca and Saline-Line flow route that both paths arrive at 
Barton Springs. During infrequent overflow conditions portions of Onion Creek 
temporarily serve as the divide between Barton and San Marcos Springs.



Figure 4.15. Sept. 2004 potentiometric-surface map west of Buda. Water levels 
measured September 8 to 10, 2004, by Joe Beery (BS/EACD) and the author. 

Tracing 
from Onion Creek in 2005 targeted verification of flow paths tentatively identified 
by potentiometric troughs, sediment-laden wells, major creek swallets, and 
connecting fault locations. Detailed water levels suggest more complexity in 
water-level surface and flow paths than indicated by widely-spaced 
measurements. 

3 3During the survey, Onion Creek was discharging at  0.17 m /s (6 ft /s) from the 
upstream USGS gauge station and the flow did not reach this stretch. 
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Figure 4.16. Map of Garner (2005) water-quality analysis interpretation. 
Groundwater flow paths interpreted in this study are overlaid with water-quality 
characterization of selected wells by Garner (2005) and Garner and Mahler 
(2007).
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Figure 4.17. Hypothetical anisotropic cone of depression. Contour maps of the 
cone of depression can be mapped based on the drawdown measured or 
extrapolated in wells at the end of an aquifer test. The anisotropy of a cone of 
depression at the end of an aquifer test can be quantified by the ratio of shortest 
diameter to the longest diameter. 
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Figure 4.18. Aquifer test hydraulic conductivity and distance to flow path. Hydraulic 
conductivities derived from aquifer tests (triangles) decrease exponentially away 
from mapped groundwater flow paths. The aquifer test correlation suggests that high 
hydraulic conductivity areas of the Barton Springs Segment

.
 are directly associated 

with primary and secondary groundwater flow paths
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Figure 4.19.  Hydraulic conductivity 
derived from specific-capacity tests show no correlation to distance from mapped 
primary and secondary groundwater flow paths. The specific-capacity tests are 
short term, pump at relatively low rates, and measure hydraulic conductivity less 
accurately than aquifer tests. Because they test only a small area around the well, 
specific-capacity tests are highly influenced by local aquifer variability.

Specific-capacity test hydraulic conductivity.
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Figure 4.20. Cimarron Park 1996 aquifer test. Final drawdowns for the 1996 
Cimarron Park aquifer test on Sept. 11, 1996. Two major groundwater flow paths 
are mapped on either side of this system, the primary Manchaca Flow Route to the 
west and a secondary flow path contributor to the Saline-Line Flow Route to the 
east. The cone of depression is interpreted to follow and diminish across these flow 
paths, although drawdown data was not collected to demonstrate this. The 
drawdown data does indicate an anisotropy of 0.12 to 0.33.
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Figure 4.21. Cimarron Park 1996 aquifer test time-series drawdown. A semi-log 
plot of drawdown data collected during the Cimarron Park 1996 aquifer test 
indicates distinct shifts in transmissivity as the cone of depression expands from 
the pumping well 58-58-102. T  is interpreted to reflect the local aquifer while T  1 2

is interpreted to reflect the extension of the cone of depression to a major flow 
path, likely the primary Manchaca Flow Route about 0.8 km west. 

Äs  = 1.6 m; Äs  = 1.1 m 1 2
3Q = 2.3 m /min

pi = 3.14159265

Cooper-Jacob (1946) Solution 
T =  (Äs*4pi) /2.3Q
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Figure 4.22. 2001 Creedmoore site 1 aquifer test. The cone of depression from the 2001 
site 1 Creedmoore System aquifer test is anisotropic, following a secondary flow path to 
the Saline-Line Flow Route.
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Figure 4.23. 2001 Creedmoor Site 1 aquifer test time-series drawdown. Shifts in 
increasing transmissivity are interpreted to reflect the brief expansion of the cone 
of depression through local aquifer, into a secondary groundwater flow path, and 
finally to the Saline-Line Flow Route 800 meters to the east.
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Figure 4.24. 2001 Creedmoore site 2 aquifer test.

M
a
n
ch

a
ca

 F
lo

w
 R

o
u
te

S
a
lin

e
-L

in
e
 F

lo
w

 R
o
u
te

FM 1626

IH
 3

5

208



Figure 4.25. Sunset Valley 1997 aquifer test time-series drawdown.Shifts in 
drawdown on a semilog plot is interpreted to reflect the cone of depression 
extending through the local aquifer matrix (T ), the Sunset Valley Flow Route (T ) 1 2

300 m to the east, and Barton Creek 1,700 m to the south.  

Cooper-Jacob (1946) Solution 
T=  (Äs*4pi) /2.3Q
Äs  = 19 m; Äs  = 4.4 m; Äs  = 1.75 m  1 2 3

3Q = 0.57 m /min
pi = 3.14

209

Pump off for 2-10 min

10

11

12

13

14

15

16

10 100 1,000Elapsed Time (min)

Drawdown (m) Pumping Rate (m3/min * 20)

Wellbore 
Storage

Depletion

Well Draws from Local Aquifer Matrix 
2T  = 8 m /day1

Cone of Depression Extends along 
Sunset Valley Flow Route

2
T  = 34 m /day2

Recharge Boundary that is 
probably Barton Creek 

2T = 86 m /day3 

D
ra

w
d

o
w

n
 (

m
)

3
P

u
m

p
in

g
 R

a
te

 (m
/m

in
)

0.5

0.6

0.8

0.7

Pump off for 2-10 min

10

11

12

13

14

15

16

10 100 1,000Elapsed Time (min)

Drawdown (m) Pumping Rate (m3/min * 20)

Wellbore 
Storage

Depletion

Well Draws from Local Aquifer Matrix 
2T  = 8 m /day1

Cone of Depression Extends along 
Sunset Valley Flow Route

2
T  = 34 m /day2

Recharge Boundary that is 
probably Barton Creek 

2T = 86 m /day3 

D
ra

w
d

o
w

n
 (

m
)

3
P

u
m

p
in

g
 R

a
te

 (m
/m

in
)

0.5

0.6

0.8

0.7



210

C

A

G
Flowing

Dry

Figure 4.26. Sunset Valley test results. The maximum drawdowns measured in 
pumping and observation wells reflect the growth of a cone-of-depression along the 
Sunset Valley Flow Route, located 300 m east. Corresponding transmissivity are 
interpreted from drawdown shifts on a semi log plot. Barton Creek was flowing 
during the test.
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Figure 4.27. Range of transmissivity measurements. The scale of the tracer tests 
was calculated as the distance between injection and discharge sites along 
mapped flow paths. The scale of the well cores, aquifer tests, and recession 
analysis is assumed to be 1 m, 2 km, and 5 km, respectively. The increase in 
transmissivity with scale may represent decreasing transmissivity with greater 
distance away from primary and secondary groundwater flow paths. 
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5.0 CONCLUSIONS 

 

A number of methods were used to evaluate groundwater flow and recharge in the 

Barton Springs Segment of the Edwards Aquifer.  Faults were mapped across the Barton 

Springs Segment to examine their effects on groundwater flow and aquifer test 

drawdown.  A water balance examined recharge on a research site. Groundwater tracing 

and other flow-path criteria defined primary and secondary flow paths and groundwater 

basins.  Aquifer tests were conducted to examine the wellfield scale hydraulic properties.  

The following conclusions were drawn: 

1) The quantity of recharge from upland internal drainage basins varies directly with 

catchment area and is reflected in the localized dissolution that creates sinkhole 

bowls. For natural internal drainage basins, the sinkhole catchment area is about 

300 times its bowl volume. Bowl volumes may be subdued in the RDM, 

Grainstone, and Basal Nodular Members and Georgetown Formation, although 

large sinkholes are found in the Kirschberg, Leached and Collapsed Members. 

Recharge contributions from sinkholes can be reduced as a result of 

anthropogenic impacts such as sediment and debris deposition, impervious cover, 

and dissection of natural catchment areas. 

2) Internal drainage basins defined as areas where runoff is completely captured and 

constitute at least 10% of the Barton Springs Segment.  Internal drainage basins 

were distinguished as natural, ponded, and artificial.  

3) Upland and intervening area recharge was measured using four different methods 

including: the measurement of water balance components on an upland sinkhole 

site for 505 days; chloride concentration comparison between rainfall and shallow 

cave drips; compilation of recharge measurements from other karst areas 

worldwide; and reinterpretation of an existing water balance based on stream-flow 

losses and Barton Springs discharge. For an instrumented internal drainage basin 

(HQ Flat) over a 505-day period when rainfall was 21% above average, 32% of 

rainfall recharged the aquifer and the remaining 68% left as evaporation or 
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transpiration to the atmosphere. 17% of the recharge (5% of rainfall) entered the 

cave drain to the sinkhole, and 83% infiltrated through soil-covered areas (26% of 

rainfall). The rapid increase in soil moisture following storm events and high 

portion of diffuse infiltration measured by water balance verified that soils on the 

J17 research site are relatively permeable.  During a longer period of average 

rainfall, the discrete recharge to both HQ Flat Cave and a second monitored 

sinkhole, Flint Ridge Cave, diminished to 3% of rainfall. Comparison of chloride 

concentrations in local rainfall and runoff to a shallow (5 m) cave drip suggests 

that 26 to 49% of rainfall recharges the Tabor site. Worldwide 20% to 60% or 

more of rainfall can be expected to recharge mature karst aquifers. A 1980’s water 

budget for Barton Springs, based on streamflow loss and Barton Springs 

discharge, was reinterpreted based on recent tracing data and found that 27% to 

36% of Barton Springs discharge was unaccounted for by streamflow loss and 

could constitute intervening area recharge. 

4) Cave morphology and groundwater tracing data indicate the groundwater flow is 

largely discrete with predominantly advective flow and low hydrodynamic 

dispersion. 

5) Across the Edwards outcrop area, the major groundwater flow routes trend 

southeast along the gradient created by down-dropped fault blocks. Within the 

artesian area, the Manchaca Flow Route localizes along a few fault trends to the 

northeast. Groundwater flow on the far eastern side of the artesian area does not 

appear to follow to fault tends. 

6) Primary and secondary flow routes convey flow from major recharge areas to 

springs. High transmissivity and rapid flow are localized along these routes within 

the Barton Springs Segment. Hydraulic conductivity (K in m/day) declines from 

the primary and secondary flow paths with increasing distance (L in m) by K = 

340 x L-10. 

7) When excessive recharge or flooding occurs, localized overflow conditions divert 

backup up flow to other flowpaths farther north or west. Infrequent overflow 

conditions may divert Onion Creek flow to San Marcos Springs.  
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The heterogeneity of the Barton Springs Segment will require additional 

characterization. Several factors that may affect the heterogeneity and anisotropy of the 

Barton Springs Segment were not examined fully. Further investigation should include: 

1) Further quantification of recharge sources to and discharge sites from the Barton 

Springs Segment, including direct recharge through swallets within the major 

creeks, recharge through intervening areas, recharge and discharge to and from 

adjacent segments of the Edwards Aquifer, recharge to and discharge from the 

Trinity Aquifer and Saline-Water Zone, anthropogenic sources and losses, and 

recharge and discharge to or through overlying confining units through hypogenic 

processes. 

2) A more detailed site-scale examination of heterogeneities of infiltration through 

soils, perhaps using tracers. A study of this type is currently being conducted on 

the Tabor WQPL research site by UT graduate student Brian Cowan. 

3) Further quantification of the aquifer characteristics and flow paths using 

groundwater tracing. 

4) The actual agents and processes of dissolution, such as the role of carbonic acid, 

hydrogen sulfide reducing agents and processes, and the role of microbial 

processes, both past and present. 
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APPENDIX A  

ESSAY: HISTORICAL OBSERVATIONS AND CONCEPTUAL PARADIGMS 

A.1. HISTORICAL OBSERVATIONS AND CONCEPTUAL MODELS OF THE BARTON 
SPRINGS SEGMENT 

In the course of my Ph.D. studies, I was intrigued by the evolution of 

hydrogeological concepts on the Edwards Aquifer. Historical views of groundwater flow 

and recharge of the Barton Springs Segment are varied. Mulkay (1979b) points out that 

scientific interpretations and validation criteria are “socially variable”, but that they are 

not necessarily invalid. Geologists try to look at Earth systems objectively, but success 

depends on the methodologies and tools that are available or accepted at the time.  The 

Edwards Aquifer and its Barton Springs Segment are introduced in a historical context in 

order to examine how views have varied. Some early investigators invested considerable 

effort in the study of this area, and many features that were visible in the past have since 

been covered by the urban landscape. 

Recorded observations beginning in the middle 1800s reflect a conceptual 

understanding of the Edwards Aquifer as discrete networks of conduits. Roemer (1849a) 

describes the Edwards outcrop area of the Edwards Aquifer: 

The tableland in general is an arid region whose terrain is composed in many 
places of fissured, hard, limestone beds. The atmospheric precipitation which 
takes place, sinks through the fissures and crevices of the limestone to the 
impermeable stone layer, collects in large subterranean channels and breaks 
out in large springs where the limestone hills end abruptly. The impermeable 
bed is the clayey Cretaceous marl, which outcrops at the surface everywhere 
near New Braunfels and apparently extends as the underlying formation under 
the hard limestone bed of the higher plateau. 

 

In 1898, Hill and Vaughan remarked on the Edwards Aquifer: 

There are many interesting caverns in the Edwards Plateau, and inasmuch as 
their occurrence, together with the general question of limestone solution, has 
great bearing upon the distribution of underground water, it is essential that 
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they be briefly mentioned. They are of three general types: (1) small cavities 
within individual limestone strata, giving them what is locally termed a 
honeycombed structure; (2) open caverns occurring in certain bluff faces 
along the stream valleys; and (3) underground caverns of vast extent dissolved 
out of many strata…. The method of rock solution here shown is especially 
interesting to students of underground water, as it gives an insight into related 
problems discussed in later pages of this paper…. The limestone, as exposed 
in cliffs, may appear hard, durable, and of homogeneous nature, but the 
interior when examined may prove to be very heterogeneous…. The irregular 
cavernous decomposition of the Edwards limestone is well shown in the bluffs 
along the Colorado River west of Austin…. While water is distributed 
horizontally by thin pervious beds, separation planes, and cavernous strata or 
honeycombed rock, it is also distributed vertically in the Edwards limestone 
by joints, fissures, and crevices.  
 

Hill and Vaughan held that the size and connectivity of subsurface caverns was 

evident from the presence of “peculiar cave-inhabiting animals” including “eyeless 

salamanders” in the Austin, San Antonio, and San Marcos area. They also reported that 

the entire Nueces River disappears into the Edwards Aquifer through a fissure at one 

location, which would be recognized as a sinking stream in other karst areas.  

In 1922, Taylor and Schoch reported to the City of Austin on the feasibility of 

using various long-term water sources. They defined a “conveyance region” named as 

“Hardscrabble Country” that constitutes the Edwards outcrop and artesian areas, limited 

on the west by a “Main fault” (the Mount Bonnell Fault and its extensions) and on the 

north by the Colorado River. Taylor and Schoch believed that groundwater from the San 

Antonio area discharged from Barton Springs. They based this on the northward decline 

in potentiometric head and gradual increases in salt content. Potentiometric surface maps 

and groundwater tracing data (presented in Chapter 4) show a groundwater divide in the 

Kyle area under most conditions tested, but cannot rule out whether northward 

groundwater flow occurs from San Antonio to Barton Springs under extreme drought 

conditions. These early scientists also calculated the maximum sustainable pumping yield 

of the Barton Springs Segment to be one-fifth the normal flow of Barton Springs (or 

about 0.34 m3/s or 12 ft3/s), which is remarkably close to the current estimated pumping 

limit of 0.28 m3/s (10 ft3/s), calculated from observations of the later 1950s drought and 

groundwater models (Sharp and Banner, 1997; Smith and Hunt, 2004).  
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Taylor and Schoch (1922) evaluated the water quality of Barton Springs for a 

possible City of Austin water supply. In 1917, the presence of E. coli was detected only 

occasionally in Barton Springs. However, daily sampling in 1922 found bacterial 

contamination in every sample collected in June, July, and five daily samples taken in 

October and November after a light rain showed the presence of E. coli  bacteria (Burns 

and McDonnell, 1922; Taylor and Schoch, 1922).  These investigators concluded that the 

contamination originated from people living far from the springs and that Barton Springs 

was too sensitive to be relied on as a water source for the City of Austin.   

The severe droughts of 1918 and the 1950s increased interest by the USGS and 

the predecessors of the Texas Water Development Board (TWDB), the Texas Board of 

Water Engineers and later the Texas Department of Water Resources to inventory wells, 

intermittently measure water levels and water quality, and periodically measure Barton 

Springs discharge (DeCook, 1963; Brune and Duffin, 1983). These data are vital for 

establishing background conditions prior to the urban growth experienced later over the 

Barton Springs Segment, to establish severe drought records, and to provide a long period 

of record.   

DeCook (1957) made the following observations about recharge of groundwater 

to the Edwards Aquifer in Hays County: 

Of the precipitation that falls on the outcrop, a part may run off on the surface 
to other areas, but this amount is relatively small, as the topography is 
subdued in profile and stream-cut valleys are widely spaced. An undetermined 
amount of the rainfall is returned to the atmosphere by evaporation, 
intercepted or transpired by vegetation, or absorbed as replenishment to the 
soil moisture. The remainder infiltrates to the underground reservoir. 
Although data are not at hand to illustrate how much of the precipitation 
ultimately reaches the Edwards ground water, it is generally believed that it is 
a relatively high percentage in limestones such as the Edwards as compared 
with that in other rock types.  In the San Marcos area, the soil veneer on the 
Edwards is relatively thin, and differential solution has produced many open 
spaces in the rock for the reception of water.  

 

Guyton and Associates (1964) noted that the Barton Springs Segment and its 

contributing area (“Edwards Reservoir”) was 960 km2 (370 mi2) in area and was 

recharged by direct infiltration on the outcrop areas and stream infiltration. Creek bottom 
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recharge through Barton, Onion, Bear, Slaughter, and Williamson Creeks was inferred to 

be the most important source of recharge. Guyton noted that even though Cold Springs 

discharged to the Colorado River at a lower elevation than Barton Springs, Barton 

Springs discharged at a much higher rate.  The Barton Springs Segment was “envisioned 

as a complex three-dimensional network of pipelines through which water moves,” and 

that at that time the “individual paths of movement cannot be predicted.” If sufficiently 

large and well-connected conduits were present, then contaminants could move to Barton 

Springs from “relatively long distances with little or no natural purification.” 

Rose (1972) and Abbott (1973) described the hydrostratigraphic properties of the 

Edwards Aquifer as related to their depositional environment and evolution.  The 

development of the Edwards Aquifer involved primary porosity present during 

deposition, dissolution of relatively thick and pure limestone sequence during the 

Cretaceous (paleokarst), selective dissolution of specific hydrostratigraphic beds by 

groundwater flow, and groundwater circulation enhanced by faulting (Abbott, 1973). 

Master conduits developed that pirated groundwater flow from other conduits and the 

matrix, and which directed flow to a few large springs. The lack of travertine deposits at 

the spring orifices indicated that residence time within the aquifer was not long enough to 

reach equilibrium with respect to aragonite (Abbott, 1973). 

The late 1970s brought more effort to quantify hydraulic parameters of the 

Edwards Aquifer and was a period of renewed discovery of the Barton Springs Segment.  

This renewed interest may have grown from the desire for expansion of a growing 

population over the only readily available water supply for most of the Barton Springs 

Segment. Since 1978, the USGS measured Barton Springs flow and major creek channel 

flows continuously on the upstream edge of the Edwards outcrop area.  Beginning in 

1989, the BS/EACD began continuous measurement of water levels in a number of 

selected wells across the Barton Springs Segment.  Cooperative support from the City of 

Austin, Texas Water Development Board, and Texas Natural Resource Conservation 

Commission, as well as research at the University of Texas at Austin has fueled 

collection of new data on the Barton Springs Segment. 
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Slade et al. (1986), Senger (1983), Senger and Kreitler (1984), and Baker et al. 

(1986) introduced quantification of hydraulic parameters in the Barton Springs Segment. 

Slade et al. (1986) and Baker et al. (1986) presented geologic cross sections that 

illustrated the geologic framework, conducted flow surveys of major creeks to show 

specific stretches where creek recharge was focused, and created potentiometric maps 

where large broad troughs gave indications of the presence of preferential flow paths.  

A test for anisotropy reported by Senger (1983) and Slade et al. (1986) measured 

the anisotropic distribution of drawdown in wells following the drawdown of Barton 

Springs pool. During low-flow conditions, a 1-m (3 ft) water-level decline was observed 

in a well (58-42-915, see Figure 4.6) 1.7 km away, in a direction of fault trends, 

following the draining of Barton Springs pool. Farther south along the trend of faulting, a 

well (58-50-216) 2.7 km from the pool displayed a 0.15-m (0.5 ft) drawdown after the 

pool draining. Another well 1 km to the west (58-42-913) showed no response to the pool 

draining. The pool draining responses demonstrated the anisotropy of flow present in the 

Barton Springs Segment and allowed the approximate delineation of the “Rollingwood 

portion” (Cold Springs groundwater basin) and the source basin to Barton Springs.  

Senger tested the anisotropy of the area near Barton Springs with a porous media model 

and found that simulated heads could reasonably approximate observed water levels but 

did not show the extent of actual declines. Senger (1983, p. 59) noted that in “a carbonate 

aquifer, the groundwater flows in general through conduit-like fractures and fissures and 

inertial flow conditions are not uncommon” and that groundwater storage in bedding 

planes and solution collapse zones gave the Edwards Aquifer isotropic characteristics.   

Like Senger (1983), Ellis (1985) acknowledged that “good hydraulic connection through 

large underground conduits throughout the aquifer” was evidenced by relations between 

discharge, water levels, and rainfall. Slade et al. (1986) attributed variations in well yield 

directly to the presence or absence of cavities. 

Andrews et al. (1984) described the groundwater flow network of the Barton 

Springs Segment: 

“A network of steeply dipping faults and joints, especially in the Balcones 

fault zone; large caverns; and underground channels afford the rapid movement of 
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ground water through the aquifer. These avenues make this part of the Edwards 

Aquifer in the Austin area particularly susceptible to pollution from natural or 

human sources during storm runoff.” 

Some literature from 1970s through the 1980s suggested an overall shift in 

viewpoints toward the Edwards Aquifer from a discrete to a perceived diffuse system.  

Senger (1983) and Slade et al. (1986) concluded from recession curve analysis and a dye 

trace that the Barton Springs Segment responded as a diffuse aquifer at large spatial 

scales. Well contamination in the 1970s and 1980s was attributed generally to poor well 

construction in those specific wells, rather than transport through conduits over distances 

in the aquifer (Reeves, 1976; St. Clair, 1979). According to St. Clair, contamination from 

many septic tanks in the Rollingwood area either did not reach the underlying water table 

of the Barton Springs Segment or reached it below measurable concentrations as a result 

of the thickness of the unsaturated zone (36 to 87 m), adsorption by clay-rich terra rossa, 

adsorption by rock surfaces in the bedrock, and dilution, dispersion, and chemical 

breakdown within the vadose and phreatic zones. Soils and fracture skins play a role in 

the adsorption and biological uptake of contaminants, as described in Chapters 3 and 4. 

The lack of groundwater contamination detected in other karst aquifers with septic tanks 

and urbanization, such as Dade County (Florida), San Antonio (Texas), and southeast 

West Virginia was presented in support of the hypothesis that Barton Springs Segment 

was relatively insensitive to surface contamination. 

The data presented in St. Clair (1979), however, do not justify the conclusion that 

septic contamination did not reach the groundwater.  In St. Clair (1979), some samples 

were intentionally taken shortly after rain events, which appropriately increased the 

chances of observing contaminants, but the relevance of sampling points was not 

established. By discounting the possibility of high anisotropy and heterogeneity, it was 

assumed that nearby wells were necessarily downgradient of the septic tanks. Since 

Quinlan (1990), karst hydrogeologists predict that the most representative sampling sites 

would likely be near springs, such as Cold Springs, but these were not monitored in the 

study, and that randomly spaced wells are unlikely to be downgradient of a single or even 

collective contamination source or sources. Many wells do not receive flow from 
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presumed sites of contamination, have only limited source areas, have distant recharge 

sources that differ from local sources, and have source areas that change with aquifer 

conditions. St. Clair (1979) assumed the Rollingwood recharge source area was local, but 

later tracing demonstrated that Barton Creek was the major recharge source for the Cold 

Springs groundwater basin (see Chapter 4).  

Later sampling did reveal that contamination was indeed present in the 

Rollingwood area, although the specific sampling needed to determine the question of 

hydrologic connection between Rollingwood area septic tanks and groundwater may still 

be lacking. Cold Springs was sampled in several subsequent studies including by Parten 

(1991), COA (1997), and Hauwert and Vickers (1994) and showed doubling of nitrate-

nitrogen and anomalously high ammonia concentrations (2.7 mg/l) after rain events that 

could represent flushed septic effluent from the unsaturated zone mixing with the 

relatively low-nitrate waters recharged from Barton Creek. Contamination in one of wells 

monitored by St. Clair, 58-42-813, was sufficient that the Texas Commission on 

Environmental Quality (TCEQ) refused to permit the well for water supply use in 1993 

(Figure 1.4). In 1995, TCEQ performed a downhole survey on this well to assist the 

author (on behalf of BS/EACD) in planning its proper plugging. The downhole video 

revealed no cascading flows or other indications that borehole leakage was contaminating 

the well.  COA (1997) noted that well 58-42-813 was elevated in chloride likely from 

anthropogenic sources. The assumption that earlier data collected by the Texas Water 

Development Board were necessarily representative of unimpacted groundwater is not 

valid, as Taylor and Schoch (1922) reported. Overall, the St. Clair study did not test for 

the type of karst conduit networks described by early investigators (Hill and Vaughan, 

1898; DeCook, 1957; Taylor and Schoch, 1922; Guyton and Associates, 1964; and 

Abbott, 1973.)  Based on nitrate-nitrogen enrichment within the groundwater in portions 

of the Barton Springs Segment, Barrett and Charbeneau (1996) suggested upland 

infiltration from septic tank leakage may be more important than previously estimated.  

Because natural sources of nitrate-nitrogen in limestone are limited to soils and 

vegetation, concentrations above 1.5 mg/l usually are derived from anthropogenic sources 

(Garner, 2005; Mahler et al., 2006).  
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Other studies from the 1970s and 1980s implied that the Barton Springs Segment 

was not particularly karstic and travel times for flow across the aquifer travel times were 

estimated to be much slower than later direct tracing data demonstrated. Brune (1981) 

estimated that “most of the water flows in a few days to a month through underground 

channeled and caverns to the springs”, but believed that most flow originated from 

nearby Barton Creek. Ellis (1985) noted that groundwater flow rates in the Edwards “may 

be considerably slower than is generally believed” and “not as fast as formerly thought” 

based on point dilution tests reported by Maclay and Rettman (1972). These point 

dilution tests indicated groundwater flow rates of 0.55 to 15 m/day (1.8 to 51 ft/day) 

through interstitial pores. Later studies (Hovorka et al., 1998; Hauwert et al., 2004a) 

showed that these small-scale tests sampled only the relatively unused pores in the matrix 

and actual groundwater flow rates were more appropriately tested in other ways.  Under 

normal flow conditions, Alexander (1990) estimated recharge from Onion Creek required 

about 3 to 5 years to discharge from Barton Springs. Slade et al. (1986, p. 39-40) noted 

that turbidity and bacteriological water-quality changes in Barton Springs and water-level 

changes in unconfined wells and Barton Springs indicated recharge from creeks reached 

the water table in a matter of hours. Even though the five monitored wells were 

unconfined, Slade et al. (1986) suggested that the discrepancy between inferred slow 

overall travel times and rapid water-level responses could be explained by pressurized 

groundwater in caves that allowed water-level changes to adjust rapidly through the 

aquifer as a pressure pulse. The turbidity and indicator bacteria in Barton Springs that 

increased within a few hours to several after storms were assumed to originate from local 

sewer-lines and from nearby Barton Creek since distant sources were thought impossible. 

Later tracing demonstrated that groundwater actual travels within days across the Barton 

Springs Segment under most conditions, such that contamination sources could rapidly 

reach Barton Springs from distant watersheds. 

Unlike Hill’s observations of the importance of caves and conduits in the aquifer 

system, some studies in the 1980s treated upland caves as localized phenomena and not 

important in the recharge contribution. Baker et al. (1986) noted that solution cavities, 

enhanced by faulting, allowed rapid infiltration and groundwater flow. However, caves 
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and sinkholes were inferred to be localized in only a few areas.  Senger noted surface 

karst features existed in upland outcrop areas but suggested that “they cannot be 

considered important as recharge points to the aquifer.” According to Senger (1983), all 

significant recharge occurred in major creekbeds as “most of the precipitation … is 

channeled as surface runoff into the creeks.”  The inference that caves were not relevant 

to aquifer yield was not universal, as Slade et al. (1986) directly connected well yields 

with the presence or absence of caves in wells. 

A.1.1. Assumptions of Local Sources to Barton Springs 
Because of the proximity of the Barton Creek channel to Barton Springs, its large 

catchment area, and demonstrated recharge loss under some conditions, workers in the 

1970s and 1980s assumed that it was the most significant influence on the recharge and 

water quality of Barton Springs. Senger (1983) hypothesized that 90% of Barton Springs’ 

flow was sustained by Barton Creek during high flow conditions.  According to St. Clair 

(1979), increases in flow within several hours to a few days after rain events and 

associated sediment plumes could come only from Barton Creek. From geochemical 

analysis, St. Clair concluded that local sites in Barton Creek and the Colorado River were 

the major sources for Barton Springs. However, the elevated chloride and sulfate 

attributed to the Colorado River instead represents the breakthroughs from the Saline-

Water Zone (Senger, 1983). Brune (1981) similarly perceived that the Barton Springs 

“are recharged chiefly by surface water in Barton Creek, and to some extent Onion 

Creek.”  

By mid-1980s it was generally recognized that Onion Creek and not Barton Creek was 

the principle recharge source for Barton Springs and the role of local recharge from 

Barton Creek has been found to be less over time. From three years of creek flow data, 

Slade et al. (1986) calculated that Barton Springs was fed by Barton, Williamson, 

Slaughter, Bear, Little Bear, and Onion creek watersheds, by 28%, 6%, 12%, 10%, 10%, 

and 34% respectively. Woodruff (1984) and Slade et al. (1986) further estimated that 

85% of Barton Springs flow recharged within the major creek channels and that the 

remaining 15% recharged in intervening creeks and upland areas of the recharge area. 
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Later, groundwater tracing studies (described in Chapter 4) documented that most of the 

Edwards outcrop area portion of the Barton Creek watershed overlie the Cold Springs 

groundwater basin (Figure 4.3), although some runoff from upper Barton Creek does 

indeed flow along Barton Creek, recharge downstream of Loop 360, and discharge from 

Barton Springs.  This recharge reaches Barton Springs faster than recharge from the other 

major creeks, as evidenced by an 8-hour tracer arrival from Barton Creek (Hauwert et al., 

2004a). However, the differences in travel times of recharge from the major creeks are 

actually relatively small, as later tracing has demonstrated that some groundwater also 

can flow through the entire vadose zone and traverse the entire extent of the Barton 

Springs Segment within 3 days (Hunt et al., 2004; Hauwert et al., 2004b; Smith et al., 

2006).   

A.1.2. Implementation of 1980s Water-Quality Protection 
The design of storm mitigation systems over the Edwards Aquifer in the 1980s 

reflected the prevailing understanding of the time. In 1979, the Shady Hollow sinkhole 

was engineered with a vertical culvert filled with gravel to filter the storm runoff from the 

neighborhood being built around it. The gravel failed from plugging during flood events 

in 1981, adjacent homes flooded, and the developer was sued by homeowners. 

Consequently, the gravel was removed to allow urban stormwater to recharge unimpeded 

(Green, 1984). Subsequently, the surface drainage for much of the Shady Hollow 

neighborhood was diverted untreated into numerous large sinkholes (URM, 1983) just 

east of the J17 and Tabor research sites discussed in section 3.7. Ironically, Shady 

Hollow is one of the “sole source” communities that rely on the Edwards Aquifer 

groundwater for its water supply.  In the late 1980s, a storm-water drainage well was 

drilled into a sinkhole in Westlake Hills lined with sand as a “unique subsurface system” 

to manage storm water runoff in a “cost-effective, trouble-free, and efficient” manner 

(Kabir, 1987). Wastewater treatment plants built for new developments in Shady Hollow 

and Travis Country in the 1980s discharged “treated” wastewater to the Edwards outcrop 

portion of Slaughter and Barton Creek watersheds. These two plants were closed in the 

early 1990s and other surface discharge of treated wastewater to the Edwards outcrop 
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area has since not been permitted. Although subsurface drainage systems of urban storm 

water are no longer constructed, older existing systems still operate today and reflect the 

1980s concept of the Barton Springs Segment as a diffuse aquifer with high dispersion 

where upland recharge is insignificant. 

A.2. CURRENT PERCEPTIONS OF THE BARTON SPRINGS SEGMENT 
In the 1990s, the Barton Springs Segment underwent another perception shift. 

Hauwert and Vickers (1994) compared features found in other karst regions, such as 

potentiometric troughs, to similar expressions of conduit flow in the Barton Springs 

Segment. Contamination identified in wells and springs verified the hydraulic connection 

to the surface and through the aquifer that would be expected from urban sources in a 

karst aquifer (Hauwert and Vickers, 1994). The City of Austin (1997) states the “flow in 

the BSEA [Barton Springs Segment] appears dominated by conduits based on the 

abundance of caves in the Edwards, rapid rises in water levels following rain, field 

observations of spring discharge points, spring responses to rain events, and rapid drops 

in water levels.” The “rapid recharge and rapid migration characteristics” of the Barton 

Springs Segment allow “contaminants to enter the aquifer rapidly with minimum 

attenuation.” Successful large scale groundwater traces began in 1996 and provided direct 

data on groundwater flow paths, travel times, and attenuation (Hauwert et al., 1997). 

Sources of sediment within the aquifer were distinguished using mineralogy and it could 

be demonstrated for the first time that particulates readily move across the Barton Springs 

Segment (Mahler, 1997). 

A.3. POSSIBLE EXPLANATIONS FOR CHANGING CONCEPTUAL MODELS 
The wide variation on perspectives of the Edwards Aquifer on even the same data 

sets and sites, begs for an explanation.  Why do current conceptual models of the 

Edwards Aquifer more resemble views of the 1800s and early 1900s than in the 1970s 

and 1980s? Below some possibilities can be suggested. 
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A.3.1 Lack of data 
One possibility could be an aliasing bias, where the magnitude of a time series 

appears smaller than when sampled at higher frequency (Agneni, 1992). The time-series 

bias easily applies to groundwater sampling for contaminates and injected tracers where a 

lower recovery of tracers or contaminates invariably occurs when loading pulses are 

missed by insufficient samples (Quinlan, 1990). Because some materials move as pulses 

through a limestone aquifer, sampling techniques selected may be insufficient to measure 

representative concentrations or loads. As a result of aliasing bias, the connection 

between surface constituents and the groundwater system may not be clear. Quinlan 

(1990) points out that the lack of detection of a contaminant is frequently the result of 

insufficient monitoring in karst areas. However, the absence of well known groundwater 

contamination still is cited today as evidence that the surface is not well connected to the 

subsurface. Because of the discrete nature of karst aquifers, insufficient groundwater 

sampling, including timing, frequency, methodology, parameters, and sampling locations, 

tends to obscure evidence of any surface and subsurface connections that exist. 

A similar bias exists because complex systems appear more heterogeneous with 

more examination. Gomez-Hernandez (2006) wrote “the issue is not so much the degree 

of model complexity but, rather, how to address the uncertainty associated with model 

predictions due to lack of knowledge.”  Ford (1999) illustrated this point with a 

hypothetical example showing how karst systems can appear more discrete (i.e., 

heterogeneous) with deeper examination. Kiraly (2002) suggested that it is possible to 

model groundwater flow in a karst aquifer but only if a high degree of understanding is 

present. 

Worldwide, the basic understanding of karst aquifer systems was relatively 

advanced by the 1940s (White, 2000). However, Hubbert’s (1940) classic paper on 

groundwater flow influenced many to treat limestone aquifers essentially as forms of 

porous media systems in which caves had little practical significance in groundwater flow 

(White, 2000 and 2007). However, it is clear even at a large scale that the groundwater 

flow rate and contaminant transport of karst aquifers cannot be accurately simulated with 

a porous-media equivalent because of the dominant effects of preferential flow paths and 
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turbulent flow along conduits (Schindel et al., 1986; Huntoon, 1995; Quinlan et al., 1996; 

Halihan et al., 2000).     

It is important to recognize there are biases toward direct observations on the 

surface by many versus those observed by a few or inferred in the subsurface.  Ford 

(1999) noted that conceptual models of karst areas came from two widely divergent types 

of investigation.  He suggested that groundwater hydrogeologists tend to examine karst 

through wells and cores and measure very localized hydraulic characteristics that 

typically suggest a system of diffuse groundwater flow and recharge.  Speleologists and 

karst hydrogeologists typically focus their investigation on conduits large enough to enter 

and on spring discharges.  These studies highlight the discrete nature of flow in karst 

aquifers. Klimchouk (2000) pointed out that even among speleologists and karst 

hydrogeologists there are historical preferences towards looking at karst morphology in 

terms of shallow epikarst processes, which can be more readily observed, rather than 

deep-seated hypogenic processes, which are more cryptic.  

A.3.2. The Cryptic Nature of Caves 
Cryptic refers to something concealed, hidden, mysterious, or not recognized and 

this term describes the nature of karst on the Barton Springs Segment. The cryptic nature 

of caves creates biases that tend to underestimate their presence. These biases include 

limited property access; the tendency for filled cave entrances; the difficulty of cave 

exploration; the limited efforts to examine and document caves; and physical constraints 

of passage size and the water table. 

Access is limited to properties where caves can be examined. Some property 

owners value privacy, are hesitant to allow access to geologists they do not personally 

know, and may not understand how such assessment may help preserve their water 

supply. Many property owners envision eventually profiting from their land investment 

and perceive that discovery of caves or endangered species may prevent or limit the 

marketability of their land. Property owners of large tracts who might otherwise allow 

access have not been asked because of time constraints of the researchers, because the 

property has not been identified as useful to a specific research problem, or because of 
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lack of contact information. Most assessment effort is invested in tracts preparing for 

immediate development, where the developer hires a geologist to conduct an assessment 

and the state and or local municipality has a limited opportunity to review the assessment 

and site. The Texas Commission on Environmental Quality is allowed 30 days to review 

the plan, receive comments from local jurisdictions, and conduct its own site inspection.  

Although many caves are documented during development review on a site-by-site basis, 

many likely are not. The public acquisition of Water-Quality Protection Lands (WQPL) 

on the Edwards outcrop area by the City of Austin since 1999 has been a big step for 

providing access and understanding of the Edwards Aquifer. The acquisition of preserve 

lands has made caves and sensitive features more economically valuable, with the result 

that private property owners are more willing to point out known features. The WQPL 

also provide access for long-term studies.   

Newly discovered caves within the Barton Springs Segment generally do not 

resemble the large, gaping openings of local, popular, commercially-developed caves. 

Most of the sinkhole entrances found and documented within the last 30 years within the 

Barton Springs Segment were discovered filled with trash, boulders, flood debris, fine 

sediment, or terra rossa.  Being depressed features, sinkholes tend to accumulate debris, 

particularly where land disturbance is occurring within the catchment area.  A study of 

sediment from Halls Cave in the Edwards Plateau suggested continuous soil erosion and 

natural cave filling during a period of strong seasonal rainfall that declined after the last 

glacial period in the late Pleistocene and middle Holocene, roughly 14,000 years ago, and 

ending about 5,000 years ago (Toomey et al., 1993; Musgrove et al., 2001; Cooke et al., 

2003).  Recent erosion (100 cm/1,000 yr) has increased by an order of magnitude over 

the relatively high climate-driven soil erosion rates of the post glacial period (2 cm/1,000 

yr) as a result of abrupt land-use changes (Cooke et al., 2003).  Subsequently, potential 

land disturbance activities, such as large-scale ranching, agriculture, and development of 

urban centers, increased sediment loading in runoff to creeks and sinkholes (Pimentel et 

al., 1995).  
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By the 1980s, much of the natural surface area in the Barton Springs Segment was 

been sufficiently modified by urbanization and ranching practices to the point that surface 

karst forms were not as evident as they had been earlier. Filling of open sinkholes was 

common practice on local ranchlands through the mid-1980s to eliminate possible 

hazards for cattle and other livestock, to create stockponds out of sinkhole depressions, 

and to dispose of wastes (Aley, 1972; Grimshaw, 1976; Elliott and Veni, 1994; Hauwert 

and Vickers, 1994). Many caves and sinkholes have been sacrificed to accommodate 

growing urban spaces.  Skyway Cave (Appendix C) is an example of dozens of known 

caves later covered with building, parking lots, yards, and other urban spaces. A 

comparison of historical and current aerial photos in Pinellas County, Florida, showed 

that 87% of the original sinkholes were covered by urbanization (Brinkmann et al., 2007). 

As neighborhoods grew closer to discovered caves, these caves became magnets for 

potentially inexperienced and ill-equipped explorers. This frequently resulted in 

unnecessary fear or injury to the explorers, or damage to the cave or its inhabitants from 

vandalism (BCCP Karst Subcommittee, 2007).  Such problems have led to the sealing of 

sinkholes and caves. As a result, the filling of sinkhole bowls or dissection of their 

catchment area may affect the ability to assess their natural condition.  

Caves have an inherent bias in that, by definition, requires that they must be large 

enough for a person can enter (Jennings, 1985, p. 135). However, conduits and fissures 

smaller than human dimensions can play a significant role in transporting subsurface 

water.  Although conduits and caves passable by humans generally are limited to 

dimensions of about 0.15-0.3 m (0.5-1 ft) in breadth, actual size limitation of access by 

an investigator is subjective. Some investigators may view a 1-m (3 ft) wide passage as 

being too small to enter. Coupled with the frequent need to remove loose material from 

portions of cave passages to make constrictions passable, most physically accessible 

caves in Austin are perceived as inaccessible. 

Cave exploration, even in the unsaturated portions of the Edwards outcrop area, is 

relatively slow, grueling, dirty, potentially dangerous, and requires specialized skills. In 

general this exploration is carried out by a few experienced volunteers associated with the 
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Texas Speleological Survey (TSS), local cave clubs, and other cave management groups. 

Most cave discoveries in the Austin area still are made or supported by a small number of 

volunteers. The Texas Commission on Environmental Quality Edwards Aquifer 

Protection Program does not require geologic features to be entered and mapped in order 

to assess their sensitivity for proposed development. Most geologists have not acquired 

the skills or inclination to examine caves to the same degree as speleologists (Veni, 

1999). As a result, relatively few cave discoveries are made each year within the Barton 

Springs Segment and the information available from accessible caves may not be fully 

utilized. 

Roughly two-thirds of the aquifer volume of the Barton Springs Segment is water 

saturated, which makes it extremely difficult or impossible to examine the phreatic zone 

in the way the vadose zone can be examined. The Barton Springs Segment is unusual as 

an aquifer, in that a person can directly examine it as far down as the water table at only a 

limited number of sites. Consequently there is a bias for vadose caves over phreatic 

caves. 

The factors influencing cave discovery tend to lead scientists, regulators, and the 

public towards believing that caves are not common or, more importantly, that conduit 

hydrologic connection is not developed within the Barton Springs Segment. In part to 

educate the public about the natural landscape, recharge, and cave ecosystems, a number 

of cave preserves have been created since the 1990s in the Austin area. These preserves 

are open to the public, although the caves themselves are restricted to supervised access. 

South Austin area parks and preserve with educational exhibits, public access to surface 

karst features, and possibly limited guided subsurface tours include the Goat Cave Karst 

Preserve, the Village of Western Oaks Karst Preserve, the Lady Bird Johnson Wildflower 

center, the Barton Creek Greenbelt, Dick Nichols Park, and the Slaughter Creek 

MetroPark. 

A.3.3 Cultural Influences 
It is possible that a scientist’s views of the Barton Springs Segment are influenced 

by cultural and social environments of the time, as hypothesized by Mulkay (1979a and 
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1979b). Consider that a few decades ago, the practice of disposing trash into sinkholes 

was accepted and widespread across the United States, and it was commonly believed 

that contaminants associated with refuse were well attenuated by limestone aquifers (see 

section 3.7.4).  Aquifer education was focused heavily toward convincing the public that 

“underground streams” espoused by dowsers did not in fact exist (Vogt and Hyman, 

1979).  In reality, as Meinzer (1923, p. 134) noted, “some of the large caverns contain 

streams that do not differ greatly from surface streams.” Regardless of whether a 

hypothesis is correct or not, social pressures exist to accept certain paradigms and reject 

others.  Mial and Mial (2002) describe the social perceptions that lead the geologic and 

scientific community to accept new paradigms in seismic stratigraphy and global sea-

level cycles almost wholeheartedly with very little supporting data, relying instead on 

“assumptions about Exxon’s resources, scientific expertise, authority, and credibility.” 

In the objective assessment of a site, it is difficult not to consider the perceived 

reactions of the public to the discoveries of heterogeneities and how such discoveries 

may affect the proposed use of sites, particularly where economic investments are 

perceived to be at risk (Adolf, 1961a; Adolf, 1961b; Wessel, 1982; Ashford, 1983; 

Bradley, 1983). Environmental scientists are frequently put in a position to characterize 

complex heterogeneous geology with pressures to produce the lowest bid, pre-determined 

desired outcomes by a client, and the need for continued work (Cehrs and Bianchi, 1996). 

Meehan (1984) saw that even previously known and active faults were frequently 

overlooked in geologic assessments for proposed nuclear plants and waste sites in 

California.  In this case, the bias was attributed to a regulatory approval system that relied 

entirely on assessments by representatives of the proposed plant who were encouraged by 

clients to find that a preselected site was structurally and hydraulically homogeneous. 

Systematic biases frequently are perceived as influencing results of scientific studies in 

the pharmaceutical and energy industries (Washburn, 2003 and 2005). Lexchin et al. 

(2003) found that pharmaceutical studies funded by companies are four times as likely 

favor their products. 

These pressures are also extended to oversight agencies.  As an example, during 

the cholera epidemics in England during the mid-1800s, the diagnosis of virulent strains 
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of cholera and its origins was influenced by long-standing but erroneous perceptions, 

politics, fears of economic consequences, and corporate conflicts between powerful water 

districts (Morris, 2007).  The erroneous understanding of cholera was ingrained by health 

boards whose members were politicians with little technical expertise and doctors who 

only supported traditional views (Morris, 2007).  

The distribution of research funding may affect the extent to which complex 

systems are understood. In the early 1980s, federal environmental research was limited 

by sweeping personnel changes, budget cuts, and reductions in regulatory requirements 

(Vig and Kraft, 1984). In the mid-1990s, EPA funding supported groundwater tracing 

studies within the Barton Springs Segment.  

It is not clear to what extent a multitude of conditions, such as limited data, the 

cryptic nature of caves, and political and economic pressures for development, 

contributed to the shift in the 1970s and 1980s to view the Edwards Aquifer as a 

relatively homogenous, diffuse aquifer with high sorption.  Factors such as limited access 

to caves, the covering of cave entrances, the lack of cave discovery and mapping efforts, 

and the discrete nature of cave data limits our perception of the prevalence of karst. Some 

aspects of the Barton Springs Segment were presented by a wide range of published 

interpretation based on little data.  

A.4 CONCLUSION 
Understanding of the recharge and discharge processes of the Barton Springs 

Segment have benefited from over a century and a half of observations. Although 

geologists in the 1800s did not differ overall in their descriptions of the Edwards Aquifer, 

there are shifts in the perception of its karst development and heterogeneity over time. 

Efforts to quantify hydraulic parameters in the 1980s were limited by perceptions that the 

Barton Springs Segment could be treated as a diffuse aquifer system.  In general, the 

perceived heterogeneity and karst maturity of the Barton Springs Segment has increased 

with greater examination. Assessments from the mid-1800s to 1970 saw the Edwards 

Aquifer as strongly influenced by conduits, from observations including disappearing 

streams, blind aquatic vertebrates, and water-quality impacts far from potential sources. 
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Assessments in the 1970s and 1980s generally saw the Barton Springs Segment as an 

overall diffuse aquifer with good hydraulic connection with localized and uncommon 

caves and conduits. In the 1970s and early 1980s some inferred Barton Springs as being 

supplied primarily or largely by Barton Creek, because it was the closest creek with a 

large catchment area. Although sediment from Barton Creek was thought to discharge at 

Barton Springs, other surface contamination was thought to be unable to reach the water 

table across the outcrop area because of attenuation and the minor role attributed to 

upland recharge. Observed instances of contamination were generally attributed to poor 

well construction within the well where contamination was observed.  The 1990s 

introduced investigations using approaches including groundwater tracing. Literature 

after 1990 generally describe the Barton Springs Segment as an aquifer in which 

fractures, fissures, caves and solution cavities are very common and groundwater flow is 

localized through conduits.  The role attributed to Barton Creek as a recharge source to 

Barton Springs diminished after tracing suggested most of the outcrop area of its 

watershed overlies the Cold Springs groundwater basin. 

The changing paradigms of the Edwards Aquifer over time demonstrate that study 

of these karst systems is still a dynamic frontier for research. "Successive transition from 

one paradigm to another via revolution is the usual developmental pattern of mature 

science” (Kuhn, 1996). With each new finding, I see my earlier interpretations requiring 

refinement.  The study of the Edwards Aquifer demonstrates that with scientific scrutiny, 

complex aquifers such as the Barton Springs Segment can be successfully characterized. 
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APPENDIX B  

MEASURED SECTIONS  



Measured section reported in Hill and Vaughan, 1899.
Interpreted by Nico Hauwert, City of Austin WPDRD, 2003
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From Hill and Vaughan, 1899.
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From Hill and Vaughan, 1899.
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From Hill and Vaughan, 1899.
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Midnight Cave Measured Section



Geologist:Nico Hauwert
Digitized by: Neil Taurins Urban Assault Measured Section
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Geologist:
Nico Hauwert
Digitized by:
Neil Taurins
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APPENDIX C 

CAVE STRATIGRAPHY
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APPENDIX D 

ANALYTICAL SOLUTIONS FOR AQUIFER TEST 
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APPENDIX D 

ANALYTICAL SOLUTIONS FOR AQUIFER TESTS 
 

A standard analytical model for pumping test data from a confined aquifer was developed 
by Theis (1935) for homogeneous, isotropic aquifers of infinite aerial extent and uniform 
thickness.  The model also assumes an initially horizontal potentiometric surface with 
horizontal, unsteady flow where water is released instantly from storage with decline in 
head.  The Theis solution is given by: 
 
Drawdown = s =   Q w(u) 

                                4πT 
 
where Q = pumping rate, W(u) = well function, and T= transmissivity. 
 
Moench (1984) provided an analytical solution for groundwater flow through a double 
porosity system with permeable block slabs separated by open fractures lined with less-
permeable fracture skins.  This solution assumes a uniform thickness aquifer of infinite 
areal extent, with a flat potentiometric surface.  It also assumes unsteady flow and that 
water is released instantly from storage with decline in hydraulic head.  The solution for 
drawdown is a Laplace transformation: 
 
dimensionless drawdown in pumped well = hwd =     ____  2[K0(x)+SwKl(x)]______          
       P{pWD[K0(x)+xSwKl(x)]+xKl(x)}  
 
dimensionless drawdown in observation well = hD=   ___          2[K0(rDx)___________            
                    P{pWD[K0(x)+xSwKl(x)]+xKl(x)} 
where: 
            ____ 

x =    √p+qD 
 

qD = _γ2mtanh(m)_ 
        1+Sfm tanh(m) 
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            __ 

m =  √σp 

                γ 
                   ____ 

γ =  rw √K′/K 

        b′ 
 

σ  =  S′s/Ss = specific storage in blocks/specific storage in fractures 

 

rD  =  r/rw = radial distance to observation well/radius of well 
 

storage in fracture = Sf =  K′bs 

                                              Ksb 
 

WD =   __πr2
c___ 

 2πr2
wSsH 

 

qD =   _γ2mtanh(m)_ 
           1+Sfm tanh(m) 
 
Explanation of Terms 
 
Kl(x) = modified Bessel function of second kind, first order 
p =  Laplace Transform variable 

K0 = modified Bessel function of second kind, third order 
 r  =  radial distance from pumping well    

 bs = fracture skin thickness 
b = saturated thickness of the aquifer 

b′ = average half thickness of the slab 
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Cooper-Jacob (1946) Solution  
 
Transmissivity = T =  (Δs*4pi) /2.3Q 
 
where: 
Δs= drawdown (m)  
Q = pumping rate (m3/min) 
pi = 3.14159265
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APPENDIX E.  

AQUIFER TEST RESULTS 
 



Well No. Y X Distance to Flowpath Saturated  Transmissivity T/sat th Storativity System Date Duration RATEGPM
Flowpath (m) Rank Thickness (m) (m2/day) (m/day) (min)

58-42-821 30.263060 -97.813890 656 1 141 15 0.11 0.05 Trigg-Forrister 2/2/82 90 16

58-50-860 30.153610 -97.821660 1,640 1 148 12 0.08 10
-6 

to 10
-10

Native Texas Nurs. 6/29/90 368 36

58-57-913 30.033890 -97.891110 3 1 148 7,500 50.80 1x10
-10

Hays High School 8/5/94 1440 347

58-57-913 30.033890 -97.891110 3 1 148 2,400 16.26 0.005 Hays High School 7/11/96 194 200

58-58-108 30.105280 -97.861950 11 1 148 67,000 453.81 1x10
-14

Leisurewoods 7/28/92 240 450

58-58-220 30.093330 -97.814450 525 1 148 5 - 87 0.59 0.059 Hunter Industries 11/8/89 435 200

58-58-410 30.066830 -97.838820 1,640 1 148 15 0.10 5x10
-3

58-58-506 30.078330 -97.830560 108 1 148 140 - 370 2.51 1x10
-7

Goforth (A) 9/27/77 420 380

58-58-508 30.079170 -97.830990 118 1 148 250 1.69 1x10
-5

Goforth No. 4 8/18/96 605 1350

58-50-731 30.152970 -97.858700 11 2 125 300 - 1,450 11.63  --- Shady Hollow (A) 5/26/83 1440 200

58-50-731 30.152970 -97.858700 11 2 125 1,200 - 8,100 64.97 1x10
-12

Shady Hollow (B) 9/1/93 1440 200

58-50-848 30.130140 -97.821690 148 2 164 310 1.89 0.02
58-50-850 30.125900 -97.815800 82 2 131 470 - 630 4.80 0.04 Creedmoore Well Site 2  17280 1284

58-57-305 30.099170 -97.892220 262 2 82 1,680 20.48 Dahlstrom 9/15/99 1380

58-57-308 30.109560 -97.878370 433 2 118 87 0.74 10
-3

 to10
-5

Huntington Estates 9/19/96 1350 110

58-58-102 30.104590 -97.854340 98 2 148 140 - 550 3.73 0.001 Cimarron Park 9/11/96 564 600

58-58-127 30.117500 -97.873610 292 2 131 124 0.94 0.02 Hays Hills B. Church 6/1/90 211 71

58-58-404 30.070830 -97.863890 136 2 148 1,100 7.45 3X10
-4

Centex Materials (B) 8/18/93 527 860

58-58-405 30.067500 -97.863610 33 2 148 4,100 27.77 10
-5 

to 10
-10

Centex Materials (C) 8/25/93 540 1080

Aquifer Test Results
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APPENDIX F. 

SPECIFIC CAPACITY TEST RESULTS 

 

 



Well System Latitude Longitude Test Duration Discharge Drawdown Specific Capacity Transmis- Source

Number Name Date  sivity

(min) (gpm) (feet) (gal/min/ft) m2/day m2/day

58-42-812 W.F. Guyton & Assoc. 30.265000 -97.813056 Jun-69 20 1.50 13.33 238 280.8 S

58-42-821 Trigg-Forister Bldg. 30.261111 -97.810556 Feb-82 16 10.40 1.54 28 27.3 P

58-42-8M Allen Keller Co. 30.259167 -97.796389 Jun-79 100 60.00 1.67 30 29.7 S

58-42-8S Espey Huston & Assoc 30.271667 -97.818889 Apr-82 150 6.00 25.00 447 553.7 D

58-42-8VW Villita West 30.26528 -97.81528 4/2/1998 15 4.0 11.24 0.36 6.4 5.6 BSEACD

58-42-913 Park Hills BC 30.26667 -97.78222 8/27/1998 5 22 1.96 11.22 201 233.2 BSEACD

58-49-7RP Poe 30.13912 -97.9661 5/8/1996 26 8.5 140.3 0.06 1.1 0.8 BSEACD

58-49-7VR Robinson 30.14833 -97.98611 1/28/1999 43 13.0 0.30 43.33 775 1002.9 BSEACD

58-49-935 Manning 30.14537 -97.88725 8/17/1998 55 20 262 0.08 1.4 1.1 BSEACD

58-49-935 Manning 30.14537 -97.88725 3/1/1994 31 12.0 440 0.03 0.5 0.4 BSEACD

58-49-937 Tabor Bear 30.15801 -97.88773 4/13/2000 40 6.3 7.13 0.88 16 14.8 BSEACD

58-49-9DT Tomlinson 30.15084 -97.87555 3/19/1997 31 9.0 5.74 1.57 28 27.8 BSEACD

58-49-9DW Weaver 30.13556 -97.89389 10/6/1999 49 15 97.25 0.15 2.8 2.3 BSEACD

58-49-9ES Sparks 30.13333 -97.88111 2/2/1999 30 12.0 30.70 0.39 7.0 6.2 BSEACD

58-49-9H Charles Ranch 30.159167 -97.898333 Aug-87 287 138.0 2.08 37 37.8 D

58-49-9JF Foley 30.12861 -97.88277 2/2/1999 19 13.1 1.00 13.10 234 275.5 BSEACD

58-49-9KM Molenar 30.14861 -97.87611 8/4/1998 11 10.0 19.10 0.52 9.4 8.5 BSEACD

58-49-9LB Bray 30.13611 -97.88223 11/7/1996 30 10.0 37.00 0.27 4.8 4.2 BSEACD

58-49-9WH Holke 30.13528 -97.89584 8/6/1999 27 12.5 80.90 0.15 2.8 2.3 BSEACD

58-49-9WM Ryder 30.13836 -97.89324 8/9/2000 31 10.0 16.50 0.61 11 10.0 BSEACD

58-50-122 White Prop 30.23839 -97.83824 8/27/1998 50 21 62.34 0.34 6.0 5.3 BSEACD

58-50-1AM AMLI Res id. Const. , Inc. 30.22833 -97.84 4/1/1999 44 4.8 33.95 0.14 2.5 2.1 BSEACD

58-50-1C1 Capital City Oil 30.23389 -97.8625 3/13/1997 35 11.5 2.50 4.60 82 89.0 BSEACD

58-50-201 Jentsch 30.21958 -97.79373 8/31/1998 36 10.0 0.58 17.24 308 370.7 BSEACD

58-50-207 Onion Crk Meadows 30.12022 -97.8207 8/27/1999 8 11.0 1.62 6.79 121 135.5 BSEACD

58-50-222 Besse 30.21722 -97.81879 3/3/1994 21 14.7 6.38 2.30 41 42.2 BSEACD

58-50-222 Besse 30.21722 -97.81879 8/25/1998 36 15 5.81 2.58 46 47.7 BSEACD

58-50-222 Besse 30.21722 -97.81879 8/4/1999 35 15 5.77 2.60 46 48.0 BSEACD

58-50-222 Besse 30.21722 -97.81879 8/7/1997 25 15 3.82 3.93 70 75.0 BSEACD

58-50-223 City of Sunset Valley 30.227500 -97.809722 Jun-90 125 49.65 2.52 45 46.4 A

58-50-224 Safeway Rental 30.23833 -97.83056 8/26/1998 40 12.0 2.20 5.45 98 107.0 BSEACD

58-50-2CW Picard 30.22668 -97.80922 1/20/1999 29 10.0 0.29 34.48 617 783.6 BSEACD

58-50-2NB2 HEBrodie 30.23753 -97.80183 10/30/1995 30 1.2 15.70 0.08 1.4 1.1 BSEACD

58-50-402 John F. Rehm 30.17832 -97.84766 3/24/1999 24 10.0 16.68 0.60 11 9.9 BSEACD

58-50-406 Gantt, Brian 30.19674 -97.84316 9/4/1998 65 5.0 215 0.02 0.4 0.3 BSEACD

58-50-414 Lee V. Johnson 30.179722 -97.840833 Nov-86 51 18.00 2.83 51 52.7 D

58-50-416 Wetzel 30.1766 -97.86723 8/18/1998 88 10.0 5.50 1.82 33 32.7 BSEACD

58-50-4BK Kimbro 30.17417 -97.8575 2/2/1999 36 5.0 0.64 7.81 140 157.7 BSEACD

58-50-4DG Grif fen 30.175 -97.84666 5/20/1999 35 6.3 65.15 0.10 1.7 1.4 BSEACD

58-50-704 Marbridge Found. #5 30.136667 -97.855556 Feb-68 1150 31.00 37.10 663 848.0 S

58-50-728 Mabee Village 30.13861 -97.85555 2/22/1995 20 51 0.20 255.00 4561 6800.8 BSEACD

58-50-730 McCoys 30.14 -97.83833 7/15/1998 60 5.3 2.61 2.03 36 36.8 BSEACD

58-50-731 Shady Hollow Estates 30.149444 -97.860000 May-83 210 10.00 21.00 376 458.7 P

58-50-7BM not sure bms 30.1625 -97.87334 12/8/1999 27 11.0 16.60 0.66 12 11.0 BSEACD

58-50-7BW Wheeless 30.13192 -97.83516 6/27/2000 23 9.0 0.41 21.95 393 481.1 BSEACD

58-50-7DM Meredith 30.15316 -97.83937 7/9/1998 31 12.5 0.59 21.19 379 463.1 BSEACD

58-50-7DP Pailthrop 30.13083 -97.85555 3/13/1998 25 13.6 12.53 1.09 19 18.7 BSEACD

58-50-7ME Everitt 30.14111 -97.83806 4/14/1998 28 4.0 4.30 0.93 17 15.8 BSEACD

58-50-7SHI Hinton 30.15222 -97.85445 6/29/1998 10 15 15.00 1.00 18 17.1 BSEACD

58-50-7SW Wiley 30.16593 -97.86705 10/23/1996 27 10.0 100.0 0.10 1.8 1.4 BSEACD

58-50-7WC Lancaster 30.14209 -97.85368 5/4/2000 13 10.0 0.4 25.00 447 553.7 BSEACD

58-50-805 Canterbury Trails 30.15768 -97.82887 1/22/1998 15 35 88.95 0.39 7.0 6.3 BSEACD

58-50-825 Thomas 30.13447 -97.81059 12/20/1995 25 7.5 84.47 0.09 1.6 1.3 BSEACD

58-50-825 Thomas 30.13447 -97.81059 9/4/1998 40 11.0 79.35 0.14 2.5 2.0 BSEACD

58-50-830 Slaughter Creek Acres 30.160278 -97.817778 Aug-71 45 160 0.28 5.0 4.4 S

58-50-835 Onion Creek Acres 30.145833 -97.812500 May-69 270 12.00 22.50 402 494.1 S

58-50-852 Malone 30.16167 -97.81834 8/20/1998 25 40 85.69 0.47 8.3 7.5 BSEACD

58-50-855 San Leanna 30.14624 -97.81927 8/20/1998 27 164 116.1 1.41 25 24.9 BSEACD

58-50-8KF Francis 30.14806 -97.825 8/18/1999 51 8.0 47.77 0.17 3.0 2.5 BSEACD

58-50-8LS Salgado 30.16556 -97.83139 3/1/2000 16 14.0 0.26 53.85 963 1268.1 BSEACD
58-50-8RG Greene 30.13944 -97.83111 4/14/1999 22 12.0 18.65 0.64 12 10.6 BSEACD

58-57-2MS Salinas 30.09306 -97.91917 8/10/1998 9 10.0 27.70 0.36 6.5 5.7 BSEACD

58-57-307 Dahlstrom Middle Sch. 30.099722 -97.882222 May-90 68 18.34 3.71 66 70.5 F

58-57-307 Dahlstrom M.S. 30.09986 -97.88229 8/18/1998 60 72 4.83 14.91 267 316.8 BSEACD

58-57-312 Rocket Water Supply 30.10611 -97.90334 8/31/1998 69 50 44.74 1.12 20 19.3 BSEACD

58-57-312 Rocket Water Supply 30.10611 -97.90334 8/4/1999 33 50 17.90 2.79 50 51.9 BSEACD

58-57-3AG Aguirre 30.09222 -97.88194 12/8/1999 10 16 2.73 5.68 102 111.7 BSEACD

58-57-3AW Wilson 30.09572 -97.87863 8/10/1999 11 10.0 0.34 29.41 526 659.9 BSEACD

58-57-3BD Davis 30.11278 -97.88528 12/15/1999 19 20 60.55 0.33 5.9 5.2 BSEACD

58-57-3BD Davis 30.11278 -97.88528 3/22/2000 28 10.0 4.14 2.42 43 44.4 BSEACD

58-57-3BF Freitag 30.1076 -97.9059 9/25/1997 32 18 8.74 2.06 37 37.4 BSEACD

58-57-3BL Larvin 30.09111 -97.88139 3/13/2000 18 9.0 0.05 180.00 3219 4668.6 BSEACD

58-57-3CA Attal 30.11194 -97.89027 2/9/2000 41 4.5 0.34 13.24 237 278.6 BSEACD
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Well System Latitude Longitude Test Duration Discharge Drawdown     Specific Capacity Transmis- Source

Number Name Date  siviy

(min) (gpm) (feet) (gal/min/ft) m2/day m2/day

58-57-3CC Pardinek 30.11676 -97.88226 8/9/2000 24 10.0 1.28 7.81 140 157.7 BSEACD

58-57-3CG Gee 30.08889 -97.91389 9/30/1998 21 14.0 36.06 0.39 6.9 6.2 BSEACD

58-57-3CT Thompson 30.11404 -97.89149 10/6/1999 14 10.0 17.66 0.57 10 9.3 BSEACD

58-57-3DB Boone 30.11445 -97.91221 9/15/1999 16 9.0 6.92 1.30 23 22.7 BSEACD

58-57-3DK Klingeman 30.09417 -97.88416 2/29/2000 24 9.0 4.91 1.83 33 32.9 BSEACD

58-57-3EG Garza 30.10563 -97.8888 6/17/1998 22 22 0.19 115.79 2071 2899.1 BSEACD

58-57-3GAH Herzog 30.12278 -97.90667 10/29/1998 25 5.0 123.4 0.04 0.7 0.5 BSEACD

58-57-3JC Clites 30.0875 -97.91583 3/13/2000 39 13.5 9.55 1.41 25 24.9 BSEACD

58-57-3JH Hardin 30.12222 -97.90556 6/21/2000 32 8.0 104.6 0.08 1.4 1.1 BSEACD
58-57-3JK Krause 30.09222 -97.87917 6/16/1998 21 23 0.70 32.86 588 743.8 BSEACD

58-57-3KD Duckworth 30.08833 -97.91444 10/7/1999 16 15 68.17 0.22 3.9 3.3 BSEACD

58-57-3KK Strickland 30.10173 -97.89841 7/13/1998 16 14.5 24.20 0.60 11 9.8 BSEACD

58-57-3LB Bonner 30.11944 -97.90691 4/14/1999 35 8.0 33.10 0.24 4.3 3.7 BSEACD

58-57-3LS Strock 30.12444 -97.88 1/27/1999 19 13.0 0.19 68.42 1224 1642.5 BSEACD

58-57-3MD Diaz 30.09805 -97.88556 8/20/1999 15 12.5 3.52 3.55 64 67.3 BSEACD

58-57-3MH Holt 30.11333 -97.91361 2/2/2000 58 8.0 13.91 0.58 10 9.4 BSEACD

58-57-3MR Ryden 30.11167 -97.9125 12/30/1998 26 7.3 18.80 0.39 6.9 6.2 BSEACD

58-57-3MV Vera 30.11389 -97.87833 1/7/1999 22 11.0 0.45 24.44 437 540.4 BSEACD
58-57-3ON Nicholas 30.08889 -97.90833 9/30/1998 24 14.0 36.00 0.39 7.0 6.2 BSEACD

58-57-3RA Allen 30.08799 -97.91394 9/25/1997 30 13.0 0.65 20.00 358 435.1 BSEACD

58-57-3RC Castillo 30.12444 -97.90639 1/7/1999 18 14.0 67.28 0.21 3.7 3.1 BSEACD

58-57-3RN New 30.11111 -97.89111 6/24/1998 15 21 0.90 23.33 417 513.9 BSEACD

58-57-3RO Rose 30.11944 -97.91 12/15/1998 48 8.5 10.48 0.81 15 13.7 BSEACD

58-57-3RS Sollitt 30.11401 -97.87897 9/14/1998 15 7.0 0.47 14.89 266 316.5 BSEACD

58-57-3RV Quintas 30.1175 -97.90889 10/1/1999 38 11.5 52.23 0.22 3.9 3.3 BSEACD

58-57-3SM Sonntag 30.12472 -97.90694 1/5/2000 22 10.0 98.03 0.10 1.8 1.5 BSEACD

58-57-3SW Woelfel 30.11417 -97.91444 3/4/1996 30 10.0 83.25 0.12 2.1 1.7 BSEACD

58-57-3TD Dickey 30.12072 -97.91077 7/11/1996 18 10.0 90.75 0.11 2.0 1.6 BSEACD

58-57-3TG Huth/Gonzales 30.08972 -97.9125 4/14/1999 10 12.5 10.40 1.20 21 20.9 BSEACD

58-57-3TK Thames 30.09712 -97.88792 7/12/2000 17 10.0 1.38 7.25 130 145.4 BSEACD

58-57-3WL Lawler 30.10972 -97.91055 1/7/1999 24 10.0 21.48 0.47 8.3 7.5 BSEACD

58-57-4AR Rickman 30.04639 -97.97472 2/12/1998 23 12.0 90.00 0.13 2.4 1.9 BSEACD
58-57-4DB Bandy 30.05417 -97.97639 5/13/1999 19 15 75.6 0.20 3.5 3.0 BSEACD

58-57-4GH Howard 30.04434 -97.95837 7/11/2000 31 10.0 71.29 0.14 2.5 2.1 BSEACD

58-57-4HG Gallagher 30.04667 -97.96056 11/24/1998 22 12.0 72.07 0.17 3.0 2.5 BSEACD

58-57-4JZ Zoehlke 30.05 -97.97778 8/16/2000 33 12.5 19.83 0.63 11 10.4 BSEACD

58-57-4MP Kunkle 30.055 -97.96722 2/12/1998 29 10.0 56.96 0.18 3.1 2.6 BSEACD

58-57-4PA Angel 30.05 -97.97916 7/21/1998 20 14.5 101.7 0.14 2.5 2.1 BSEACD

58-57-4PA Angel 30.05 -97.97916 7/5/1996 11 10.0 26.88 0.37 6.7 5.9 BSEACD

58-57-4PM Moreno 30.04645 -97.96012 11/11/1998 14 11.0 17.28 0.64 11 10.5 BSEACD

58-57-4RR Running Rope 30.05233 -97.99524 2/3/1999 27 13.3 53.40 0.25 4.5 3.8 BSEACD

58-57-4SB Burrier 30.04445 -97.95972 11/19/1998 28 23 0.57 40.35 722 928.6 BSEACD

58-57-4TH Haggard 30.05 -97.97694 8/11/1997 3 5.0 150 0.03 0.6 0.4 BSEACD

58-57-506 Grote 30.045 -97.96167 8/14/1998 35 20 213.2 0.09 1.7 1.3 BSEACD

58-57-5BM Miranda 30.04556 -97.95805 2/23/1999 28 10.0 33.32 0.30 5.4 4.7 BSEACD

58-57-5CK Kelly 30.04445 -97.95333 2/9/1999 31 10.0 3.76 2.66 48 49.2 BSEACD

58-57-5J2 Inn Above Onion Creek 30.0495 -97.93567 7/11/2000 140 10.0 44.65 0.22 4.0 3.4 BSEACD

58-57-5JO Inn Above Onion Creek 30.04694 -97.93806 3/9/1994 55 8.0 200 0.04 0.7 0.5 BSEACD

58-57-5TS Schneider 30.045 -97.95695 2/9/1999 26 11.0 23.01 0.48 8.5 7.7 BSEACD

58-57-606 Barton Prop 30.04773 -97.88367 12/28/1998 17 7.5 6.51 1.15 21 19.9 BSEACD

58-57-6CS 6S1/Clif f Sorrel? 30.08139 -97.91333 3/3/1999 30 8.0 6.60 1.21 22 21.1 BSEACD

58-57-6DC Conner 30.04322 -97.89894 3/10/1999 19 6.0 0.90 6.67 119 132.8 BSEACD

58-57-6JS Stavlo 30.08055 -97.90556 9/30/1998 17 13.0 5.06 2.57 46 47.4 BSEACD

58-57-6KM Matzig Cove 30.08278 -97.91028 5/25/2000 18 10.0 0.56 17.86 319 385.0 BSEACD

58-57-6KW Weisbeck 30.08278 -97.9125 3/7/1998 44 10.0 0.10 100.00 1788 2474.6 BSEACD
58-57-6LW Wimmer 30.08137 -97.91212 6/11/1998 18 22 14.70 1.46 26 25.8 BSEACD

58-57-6SI Simmons 30.08139 -97.91333 6/10/1999 13 12.5 9.30 1.34 24 23.6 BSEACD

58-57-8DC Crowell 30.04111 -97.95417 12/8/1998 33 9.0 0.05 180.00 3219 4668.6 BSEACD

58-57-8DG Grimes 30.04028 -97.93278 4/8/1999 34 8.0 13.46 0.59 11 9.8 BSEACD

58-57-8MR Ragland 30.04028 -97.93389 10/13/1999 15 13.5 39.02 0.35 6.2 5.4 BSEACD

58-57-8SR Richards 30.04111 -97.94778 11/12/1998 14 11.0 0.41 26.83 480 597.6 BSEACD

58-57-910 Mt. City Oaks WSC 30.034722 -97.899167 Jul-90 184 0.25 736.00 13163 21366.1 E

58-58-102 Cimarron Park #2 30.106111 -97.854167 Apr-84 600 4.00 150.00 2683 3834.2 P

58-58-115 Estate Ut ilities WSC 30.123056 -97.871944 Nov-79 660 12.00 55.00 984 1297.4 S

58-58-122 Twin Oaks 30.09472 -97.84361 12/17/1993 19 6.0 2.10 2.86 51 53.2 BSEACD

58-58-123 Elizabeth Porter 30.109444 -97.841667 Feb-85 400 15.00 26.67 477 593.7 D

58-58-1A Frank Burdette 30.123889 -97.871389 Jun-90 10.8 0.29 37.07 663 847.3 E

58-58-1AS Sampsom 30.10583 -97.87083 4/21/1998 60 6.0 3.08 1.95 35 35.2 BSEACD

58-58-1B Hays Hills Bapt ist  Ch. 30.117222 -97.874444 Jun-90 71 7.00 10.14 181 209.0 P

58-58-1CD Draper 30.08333 -97.87305 2/10/1999 16 8.0 0.71 11.27 202 234.1 BSEACD

58-58-1EE Neptune-Wilkinson 30.084444 -97.866667 Apr-84 225 127.0 1.77 32 31.8 D

58-58-1GB Buchanan 30.10762 -97.87096 10/7/1999 27 16 16.80 0.95 17 16.2 BSEACD

58-58-1JM Miller 30.11444 -97.87167 3/5/1998 48 5.0 6.20 0.81 14 13.6 BSEACD

58-58-1KM Marks 30.09347 -97.84483 9/29/1998 20 19 3.93 4.83 86 93.9 BSEACD
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Well System Latitude Longitude Test Duration Discharge Drawdown     Specific Capacity Transmis- Source

Number Name Date  sivity

(min) (gpm) (feet) (gal/min/ft) m2/day m2/day

58-58-1MA Acosta 30.10028 -97.865 2/16/2000 39 12.0 0.78 15.38 275 327.8 BSEACD

58-58-1MH Harper 30.10972 -97.87195 9/25/1997 10 18 0.28 64.29 1150 1535.5 BSEACD

58-58-1MO Oakes 30.10695 -97.86806 10/12/1999 6 11.0 1.01 10.89 195 225.7 BSEACD

58-58-1PK Kaskie 30.10306 -97.8725 1/11/2000 24 7.0 0.91 7.69 138 155.0 BSEACD

58-58-1PW Wentworth 30.11315 -97.87292 2/9/2000 43 12.0 1.09 11.01 197 228.3 BSEACD

58-58-1RC Cullen 30.10028 -97.85167 2/10/2000 23 12.5 0.90 13.89 248 293.5 BSEACD

58-58-202 Myst ic Oak WSC #1 30.124444 -97.813333 unk 42 185 0.23 4.1 3.5 S

58-58-206 Rainbow Ranch 30.10222 -97.82584 5/26/1999 15 10.0 0.90 11.11 199 230.6 BSEACD

58-58-208 Onion Crk Meadows 30.11639 -97.81976 8/5/1993 7 92 54.48 1.69 30 30.1 BSEACD
58-58-219 John Rogers 30.09167 -97.8175 8/20/1998 36 12.0 48.80 0.25 4.4 3.8 BSEACD

58-58-2JS Stafford 30.11722 -97.825 7/13/1998 7 16 6.6 2.42 43 44.5 BSEACD

58-58-2SG Gasparotto 30.10806 -97.81805 1/7/1999 26 6.5 27.28 0.24 4.3 3.6 BSEACD

58-58-406 Texas-Lehigh Cement 30.061389 -97.855556 Aug-66 1200 53.00 22.64 405 497.5 D

58-58-412 Plum Creek No. 1 30.07667 -97.83444 9/30/1998 235 510 112.0 4.55 81 88.0 BSEACD

58-58-412 Plum Creek WSC 30.076389 -97.834167 Jun-90 470 52.60 8.94 160 182.3 E

58-58-413 City of Buda #3 30.072222 -97.834444 Mar-87 430 99.33 4.33 77 83.3 P

58-58-423 Comal Tackle 30.06781 -97.85912 7/15/1999 35 17 3.04 5.59 100 109.9 BSEACD

58-58-4BP Pool 30.07278 -97.87361 11/16/1999 18 11.0 4.23 2.60 47 48.1 BSEACD

58-58-4DL Lowden 30.07944 -97.86945 6/24/1998 19 15 0.65 23.08 413 507.8 BSEACD

58-58-4JP Puckett 30.08046 -97.86948 3/7/2000 9 8.0 1.82 4.40 79 84.7 BSEACD

58-58-506 Goforth WSC 30.078333 -97.830278 Sep-77 310 65.00 4.77 85 92.5 P

58-58-508 Goforth WSC 30.078611 -97.830556 Jul-90 227 90.90 2.50 45 46.0 A
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APPENDIX G. 

PHOTOGRAPHS FROM RESEARCH SITES 
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APPENDIX H. 

LIST OF VEGETATION ON RESEARCH SITES 

 

 
Juniperus ashei (ashe juniper) 
Quercus  fusiformis (Escarpment live oak) 
Mahonia trifoliolata (agarita) 
Ulmus crassifolia (cedar elm) 
Diospyros texana (Texas persimmon) 
Vitis mustangensis (mustang grape) 
Celtis occidentalis (hackberry) 
Prosopis glandulosa (mesquite)  
Opuntia macrorhiza (prickly pear) 
Forestiera pubescens (elbow bush) 
Smilax bona-nox (greenbriar) 
Toxicodendron radicans (poison ivy) 
Zanthoxylum hirsutum (toothache tree) 
Rhus lanceolata (flameleaf sumac) 
Bothriochloa ischaemum var. songarica (King Ranch bluestem)  
Bothriochloa saccharoides var. torreyana (silver bluestem) 
Schizachyrium scoparium var. frequens (little bluestem) 
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APPENDIX I.  

TRACER PROPERTIES 
This section discusses the hydraulic characteristics and health properties of 

several fluorescent dyes introduced, including sodium fluorescein (fluorescein), 

rhodamine WT, eosine, sulforhodamine B, and pyranine, and evaluates factors that can 

affect their use within the Barton Springs Segment.  Their sorptive characteristics 

influence how well the tracer is recovered at monitored discharge sites.  Also, each tracer 

has different responses to factors such as sunlight, temperature, acidity, and chlorine.  

This type of comparison is important to help distinguish when limitations resulting from 

the type of tracer used will limit recoveries. The tracers selected for the study have been 

well tested to determine their low toxicity for drinking water sources and aquatic life.   

 

Transport and Recovery of the Tracers 

In one reported groundwater trace, two organic tracers were used simultaneously 

from the same location.  One of the tracers, fluorescein, was detected in 18 domestic 

wells, but the rhodamine WT tracer was only detected in two of the 18 wells (Aley, 

2002).  In a separate study, Brown and Ford (1971) discovered three different 

breakthrough curves using rhodamine WT, fluorescein, and rhodamine B tracers from the 

same site in a karst area of Canada.  In this 1.3 mile trace, 98% of the rhodamine WT was 

recovered and none of the fluorescein was detected.  Furthermore, the rhodamine B took 

twice as long as the rhodamine WT for its initial arrival.  Obviously, different properties 

of the tracers themselves will influence the result of any tracer test. When interpreting the 

results of tracer studies, it is important to understand the properties of the tracers and how 

they can influence the recovery and travel time measured as well as the shape of the 

breakthrough curve.  No direct comparison of the tracers’ performance within the Barton 

Springs Segment was conducted as part of this study.  However, some information on 

tracer properties is available in the literature.  
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Sorption 

Sorption includes both absorption and adsorption.  Absorption is the assimilation 

of dissolved constituents of a solution (solute) inside a solid matrix.  Adsorption is the 

attraction of a solute to a solid surface by weak electrical attraction or stronger chemical 

bonds.  The amount of a solute that is adsorbed onto a solid depends on the 

characteristics of the solute, the nature of the solid, and the concentration of the solute 

(Helfferich, 1962, Mercer and Faust, 1981).  As a result of adsorption, organic tracers 

move more slowly than water and ionic or radioactive tracers (Davis et al., 1985).  

Conservative tracers have low sorptive properties and are preferred for estimating 

groundwater-flow rates.  Organic tracers adsorb to varying degrees on sediments and 

clay. 

Based on experimental data of fluorescence changes with a suspended kaolinite 

mixture, Smart and Laidlaw (1977) found that at a 20 g/l suspended clay concentration, 

51% of sulforhodamine B, 67% of rhodamine WT, 93% of fluorescein, and 95% of 

pyranine remained dissolved in solution.  Suspended sediment not only adsorbs the 

organic tracers, but to a lesser degree also raises the background fluorescence and reduces 

the tracer fluorescence by light absorption and scattering.  Suspended sediment is usually 

not a significant problem when sediment concentrations are less than 1,000 mg/l, the 

sediment is not composed of extremely fine particles or organic matter, and the 

suspended sediment is allowed to settle and separate prior to analysis. 

Some studies show that rhodamine WT is strongly sorbed in sediment-laden water 

and organic sediments (Smart and Laidlaw, 1977; Aley, 2002), but otherwise appears to 

be relatively conservative as a tracer (Wilson, 1971; Smart and Laidlaw, 1977; Aley, 

2002, Aulenbach and others, 1978; Brown and Ford, 1971). The inconsistent sorptive 

nature of rhodamine WT is due in part to its molecular structure.  Rhodamine WT 

typically shows a two-peak breakthrough curve in chromatograms (Rochat, et al., 1975; 

Hofstraat, et al., 1991) as well as in column tests (Sabatini and Austin, 1991).  This two 

step breakthrough curve is attributed to two isomers of rhodamine WT, one which is 

relatively conservative, and the other which has relatively high sorption (Shiau, Sabatini, 

and Harwell, 1992). Rhodamine WT breakthrough curves show spreading from this 
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nonequilibrium sorption. For this reason, relatively higher masses of rhodamine WT are 

necessary to obtain a recovery comparable to fluorescein. 

The ionic tendency of the tracer and the type of aquifer medium will affect the 

amount of sorption that occurs.  Rhodamine WT and sulforhodamine B have both 

cationic and anionic groups that will tend to sorb on most surfaces, although they sorb 

less on anionic surfaces, such as kaolinite sediment (Smart and Laidlaw, 1977) and sand 

or sandstone aquifers (Sabatini, 2000).  Fluorescein and eosine are anionic and tend to 

sorb most strongly onto positively charged surfaces such as limestone (Sabatini, 2000).  

If significant, this factor allows fluorescein to pass with greater ease through fine-grained 

sediment at recharge feature entrances, but cause a reduction in fluorescein as it passes 

through the aquifer.   

Greater losses occur in soil than in cave sediment or cave stream pebbles possibly 

due to greater sorption and biological decomposition (Aley, 2002).  Fluorescein and 

rhodamine WT are most strongly sorbed onto organic materials. Sorption of the tracers 

within shallow, fine-grained sediment covering the opening of injection sites probably 

accounts for a significant loss of the tracer mass.  Most of the injection sites (A, B, C, E, 

G, K, P, M, N, and O) were filled with an undetermined thickness of sediments near the 

surface that acted to reduce the recovered tracer mass.  For traces F, H, J, D, I, L, M’, Q, 

and R, the tracer was poured directly into conduit openings. Trace T was likely 

completely obstructed by a trash and sediment plug at the bottom of the cave and was 

encountered years later during a cave cleanup and exploratory excavation. 

Partial or complete saturation of the sorption media (fracture skins) cause the 

percent recovery of the organic tracers increases significantly with larger injection tracer 

mass.  Low injection masses of tracer are a significant cause for error in qualitative 

calculations of percent recovery because of arrival of tracers below the detection limit 

and the greater significance of possible errors in discharge estimations (Smart and 

Laidlaw, 1977).  Consequently, percent recoveries of a small mass of tracer injected 

cannot be accurately used to calculate the results of a larger injection mass, and estimates 

of percent recovery for a larger injection mass will invariably be underestimated. 
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Hydrogen Ion Concentration (pH) 

Smart and Laidlaw (1977) examined the effect of pH on the organic tracers.  Low 

pH caused tracer degradation from changes in ionization and chemical structure. Each of 

the organic dyes discussed here have a net negative charge (anionic) at pH greater than 7, 

and reverse charges or become positively charged at some lower pH, depending on its 

general chemical group.  This charge reversal appears to result in a loss of fluorescence.  

Rhodamine WT undergoes a decline in fluorescence at a pH less than 5.  Variations in pH 

have little effect on the fluorescence of sulforhodamine B (a sulphonate acid group).  

Tracer degradation at lower pH may also result from other chemical structure changes. 

For example, fluorescein abruptly changes from a fluorescent quinoid structure to a 

colorless leuco compound below 6 pH.  Pyranine experiences a sharp shift in the 

absorption spectrum causing an elimination of fluorescence below 6.5 pH.  Even below 

9.5 pH, pyranine shows a substantial decrease in fluorescence (Aley, 2002).  The pH of 

natural waters within the Barton Springs Segment generally range from 6.8 to about 7.5 

(Hauwert and Vickers, 1994), so that the effects of pH are likely only a consideration for 

pyranine traces. 

 

Chlorine 

Of the tracers examined in the literature, only rhodamine WT was tested for its 

response to chlorine (Deaner, 1973).  In this test, strong declines in fluorescence were 

observed at high concentrations of chlorine and for high periods of exposure to chlorine.  

For example, when 0.01 mg/l of rhodamine WT is exposed to a 20 mg/l chlorine residual 

for 20 hours, a 23% reduction in the original concentration can be expected.  In the 

Barton Springs Segment tracing study, chlorinated water was occasionally used to flush 

the tracer.  Based on a 1 mg/l chlorine residual and 20-hour exposure duration, only about 

a 2% reduction in the original concentration of rhodamine WT is expected. 

 

Salinity 

Laboratory tests by Feuerstein and Selleck (1963) found fluorescein to be strongly 

affected by high levels of chloride up to 18,000 mg/l, and that sulforhodamine B showed 
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only slight degradation.  Additional laboratory tests by Smart and Laidlaw (1977) found 

very different results of sodium chloride degradation of organic tracers.  Using chloride 

concentrations of up to 17,800 mg/l, rhodamine WT and sulforhodamine B fluorescence 

declined 8% and 4%, respectively.  No fluorescence degradation was measured in either 

fluorescein or pyranine.  Within the Barton Springs Segment, chloride concentrations 

generally ranged from about 5 to 20 mg/l in 20 wells and springs sampled in the 

freshwater portion over two sampling events (Hauwert and Vickers, 1994).  Chloride 

concentrations from one Saline-Water Zone sample location ranged from 273 mg/l to 388 

mg/l over two sampling events.  Old Mill Springs shows elevated levels of chloride 

attributed to mixing of the fresh water and Saline-Water Zones.  Some minor reduction in 

fluorescence due to chloride is possible in tracer concentrations measured at Old Mill 

Springs.  Trace 9d into a Saline-Water Zone well within 3 km of Barton Springs was 

never recovered. 

 

Temperature 

Temperature variations at the time of analysis can be significant for 

sulforhodamine B and rhodamine WT, but less significant for fluorescein and pyranine 

(Smart and Laidlaw, 1977).  For the Barton Springs Segment tracing study, all analytical 

results were corrected for temperature by OUL. 

 

Photodecay 

Exposure to light causes fluorescent tracers to absorb light, increasing molecular 

vibration, and raising the energy state (Smart and Laidlaw, 1977).  The higher energy 

state leads to greater chemical reactivity and greater decomposition through oxidation. 

Fluorescein, eosine, and pyranine show strong photodecay, causing nearly complete loss 

of a 1,000 ppb tracer concentration within 3 hours (Aley, 2002).  A similar test of 

rhodamine WT revealed only a 17% reduction in a 1,000 ppb sample after 5 hours, but a 

68% reduction in the concentration of a 100 ppb sample, and resulted in an emission 

wavelength shift that resembled eosine.  Sulforhodamine B samples of 1,000 and 100 ppb 

concentration showed losses of 5% and 40%, respectively, over 5 hours of exposure.  



Photodecay is not a major source for tracer degradation in the traces where the entire 

trace occurs underground.  However, photodecay could represent a major factor for tracer 

degradation in traces A, A’, B, E, G, and N, 9b, 10c where a portion of the tracer may 

have been exposed at the surface for several hours, or was only detected in a river 

downstream of the spring discharge point. 

 

Detection Limits 

As indicated in Table 2.1, the detection limits vary for the tracers used.  The 

detection limit for rhodamine WT is an order of magnitude higher than that for 

fluorescein.  Some mass of a tracer arrives at the discharge spring below the detection 

limit. Table AI.1 shows that the mass of tracer that can be expected to discharge at the 

detection limit under average flow over a 24-hour period at Barton and Cold Springs is 

relatively small. 

In general, the tracers used in this study have been rated in order of decreasing 

recovery as follows: fluorescein, pyranine, eosine, rhodamine WT, and sulforhodamine B 

(Behrens, 1986; Aley, 2002).  Pyranine, however, shows the poorest ability to adsorb on 

charcoal receptors and then release the tracer to an elutant for analysis.  Based on about 

1,000 traces reported in the literature, Aley (1997 and 2000a) found that recoveries 

typically ranged from 20% to 50%. 
 

 

Table AI.1 Calculated tracer recoveries at their detection limits 

Tracer Total Tracer Mass Discharging over 24 hours
    Barton Springs flow    Cold Springs Flow

                 1.4 m3/s or 53 cfs    0.4 m3/s or 14 cfs
(lbs/day ) (kg/day) (lbs/day ) (kg/day)

Fluorescein 0.00014 0.00006 0.00004 0.00002
Rhodamine WT 0.00200 0.00091 0.00053 0.00024
Eosine 0.00143 0.00065 0.00038 0.00017
Sulforhodamine B 0.00572 0.00260 0.00151 0.00069
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GLOSSARY 
Aperture: smallest diameter section at the entrance of conduit or cave draining a 
sinkhole or planar opening between fracture or fissure sides.   
 
Artesian area: portion of the Barton Springs Segment located east of the Edwards 
outcrop area and west of the Saline-Water Zone where overlying clays, limestones, and 
shales are present.  The artesian area is generally but not necessarily under artesian 
groundwater conditions. 
 
Artificial internal drainage basin: man-made permeable basins, such as quarries, where 
surface drainages are captured and do not flow beyond the depression. 
 
Barton Springs Segment: a freshwater portion of the Balcones Fault Zone portion of the 
Edwards Aquifer between the Kyle and Driftwood area and the Colorado River that 
discharges from Barton Springs and to the south bank of the Colorado River. It includes 
the Manchaca, Sunset Valley, and Cold Springs groundwater basins and excludes the 
Saline-Water Zone and contributing area.  
 
Bowl: volume of rock that has been dissolved or collapsed at the entrance of a recharge 
feature.  It is a measure of the hydraulic connection of a recharge feature to the aquifer 
and the relative recharge significance of a feature.  Where the bowl is roughly conical the 
bowl volume can be calculated as: 

Bowl Volume = (average rim radius)2*C  
 
  or more accurately 
 

Bowl Volume = rim area * C/3 
In some cases the bowl includes a vertical shaft resembling a cylinder in shape that 
originated as vadose shafts intercepted by surface erosion and not by surface dissolution. 
However where vertical shafts are attributed to surface dissolution, the following formula 
can be used: 

Cylinder volume = 6.28 * (shaft diameter)2 * C or 6.28 * (shaft diameter)2 * Z 
 
C: depth (in feet) from the extrapolated rim surface to the aperture in a sinkhole. 
Represents greatest depth of material removed by recent surface dissolution, but not 
ancient groundwater dissolution. 
 
Catchment Area: land surface area draining to a recharge feature. Typically delineated 
through a combination of field measurements and observations, areas defined in the field 
using a Trimble XRS or similar quality GPS, and two or ten foot contour interval surface 
maps.  Flow observations associated with recharge events and debris lines can be used to 
help delineate catchment areas.  Catchments for creek bottom recharge features are 
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typically delineated by DEM elevation models in GIS or created as shapefiles from 
contour maps. 
 
Collapse Sinkhole: sinkhole entrance primarily formed by collapse of a cave roof, 
evidenced by an underhanging entrance. These karst features generally do not divert 
much surface recharge, but serve as important habitat for karst species and are well-
connected hydraulically to the water table.  Examples of collapse sinkholes in the Barton 
Springs Segment are Goat and Get Down Caves (Appendix E). 
 
Confining units:  rock units overlying the Edwards Group including, in descending 
stratigraphic order, rocks of the Taylor Group, Austin Group, Eagle Ford Group, Buda 
Formation, and Del Rio Formation. The use of the term “confining units” based on 
mapping of surface exposures is not intended to imply that surface connections with the 
Edwards Aquifer necessarily are absent or that artesian conditions are present.  
 
Contributing area: areas of the Onion Creek, Bear, Slaughter, Williamson, and Barton 
Creek watersheds underlain by continuous exposure of the Glen Rose Formation. 
 
Contributing Zone: a TCEQ and City of Austin regulatory area. In regards to the Barton 
Springs Segment, TCEQ defines a Contributing Zone ( 30 TAC, § 213.22(3)) as: 
 

“The area or watershed where runoff from precipitation flows downgradient to the 
recharge zone of the Edwards Aquifer. The Contributing Zone is located upstream 
(upgradient) and generally north and northwest of the Recharge Zone for the 
following counties: 

(C) all areas within Hays and Travis Counties, except the area within the 
watersheds draining to the Colorado River above a point 1.3 miles upstream from 
Tom Miller Dam, Lake Austin at the confluence of Barrow Brook Cove, Segment 
1403 of the Colorado River Basin.” 

 
Contributing Zone Within the Transition Zone: TCEQ regulatory area defined as: 

“The area or watershed where runoff from precipitation flows downgradient to the 
Recharge Zone of the Edwards Aquifer. The Contributing Zone Within the Transition 
Zone is located downstream (downgradient) and generally south and southeast of the 
Recharge Zone and includes specifically those areas where stratigraphic units not 
included in the Edwards Aquifer crop out at topographically higher elevations and 
drain to stream courses where stratigraphic units of the Edwards Aquifer crop out and 
are mapped as Recharge Zone” (30 TAC, § 213.22(3)). 
 

Edwards Aquifer: the rocks consisting of the Georgetown Formation and Edwards 
Group south of the Colorado River or Edwards Formation and Georgetown Formation 
north of the Colorado River that is west or north of the Saline-Water Zone.  
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Edwards outcrop area: portion of the Barton Springs Segment where the Edwards 
Group or Georgetown Formation outcrops at the surface or below unconsolidated alluvial 
deposits or soils. Also included are areas of overlying or underlying rocks that are 
entirely contained by outcrop areas of Edwards Group or Georgetown Formation. This 
area was previously known as the “Hardscrabble Country” (Taylor and Schoch, 1921) 
and was mapped and revised by Guyton and Associates (1958), Slagle et al. (1986), and 
Small et al. (1995).   
 
Fault: a shear fracture where one side of the fracture plane moved relative to the other (at 
least 1 m). 
 
Fissure: planar fracture aperture enlarged by removal of materials by processes such as 
solution and erosion, and faults apertures with poorly matching sides. 

Flow Conditions: a relative measure of recharge and groundwater storage conditions of 
the Barton Springs Segment based on springflow rates of Barton Springs. In this study, 
flow conditions are based on the combined flows of Main Barton, Eliza, and Old Mill 
spring outlets of Barton Springs. Low flow is considered present when these Barton 
Springs outlets flow less than 1.1 m3/s (40 ft3/s); average flow is between 1.1 m3/s (40 
ft3/s) and 2 m3/s (70 ft3/s), and high flow is considered to be above 2 m3/s (70 ft3/s.) 
 
Fractures: joints or faults formed nearly instantaneously from stress failure, and are not 
significantly modified by solution. Unless specified, fractures generally refer to 
extensional fractures formed by maximum stress parallel to the fracture plane and least 
stress (tension) perpendicular to the fracture plane. Fracture can be horizontal, vertical, or 
of any orientation.  
 
Fracture Aperture: discharge through a fracture or fissure can be described by the cubic 
law as: 

Cubic Law   Q = pw g b3 i / 12μ K = pw g b2 / 12μ 
where: 

Q – discharge (L3/t) 
pw – fluid density (M/L3) 
g – gravitational acceleration (L/t2) 
b – aperture (L) 
i – hydraulic gradient 
μ - dynamic viscosity (M/ L2/t) 
K - hydraulic conductivity 

 
HQ Flat: Headquarters Flat sinkhole, named and identified by the Texas Speleological 
Survey, is located on the J17 WQPL. 
 
Internal drainage basins: natural catchments where at least 90% of the runoff generated 
area does not discharge from the basin on the surface under natural conditions. 
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Intervening areas: Edwards outcrop areas of the Barton Springs Segment that lie outside 
the floodplain of the major creeks and include tributaries to the major creeks. 
 
Karst feature: natural openings and macropores resulting from solution of soluble rocks 
and associated collapse. Includes caves, sinkholes, sinking streams, swallets, solution 
cavities, and springs. 
 
Major creeks: the main channels of Onion, Bear, Little Bear, Slaughter, Williamson, and 
Barton Creeks. 
 
Rim: edge of local dissolution associated with a recharge feature, usually marked aerially 
by a sharp break in slope around the aperture. Measured by X and Y diameter (in feet) or 
as an area delineated by GPS unit. 
 
Preferential flow: rapid, nonuniform and turbulent transport of solutes and water 
through conduits and other preferential pathways through the soil and rock (Stagnitti, 
1994; Hauwert et al, 2004). 
 
Solution Sinkhole: sinkhole formed primarily by dissolution, as evidenced by a 
prominent concave bowl. 
 
Ponded internal drainage basins: internal drainage basin with a drain or aperture that is 
obstructed by sediment and other debris to the extent drainage is significantly inhibited. 
Recharge Zone: regulatory area defined by TCEQ or City of Austin and Travis Country 
that generally includes the Edwards outcrop area.  
 
TCEQ Chapter 313 defines the Recharge Zone as: 
 

“generally, that area where the stratigraphic units constituting the Edwards Aquifer 
crop out, including the outcrops of other geologic formations in proximity to the 
Edwards Aquifer, where caves, sinkholes, faults, fractures, or other permeable 
features would create a potential for recharge of surface waters into the Edwards 
Aquifer. The recharge zone is identified as that area designated as such on official 
maps located in the appropriate regional office and groundwater conservation 
districts” ( 30 TAC, § 213.3(25).  
 

The TCEQ Chapter 213.3 (Definitions) defines the Edwards Aquifer as: 
 

“that portion of an arcuate belt of porous, waterbearing, predominantly carbonate 
rocks known as the Edwards (Balcones Fault Zone) Aquifer trending from west to 
east to northeast in Kinney, Uvalde, Medina, Bexar, Comal, Hays, Travis, and 
Williamson Counties; and composed of the Salmon Peak Limestone, McKnight 
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Formation, West Nueces Formation, Devil’s River Limestone, Person Formation, 
Kainer Formation, Edwards Group, and Georgetown Formation.  The permeable 
aquifer units generally overlie the less-permeable Glen Rose Formation to the south, 
overlie the less permeable Comanche Peak and Walnut Formations north of the 
Colorado River, and underlie the less-permeable Del Rio Clay regionally” ( 30 TAC, 
§ 213.3(25).   

The TCEQ Recharge Zone is mapped in: 
http://www.tceq.state.tx.us/gis/metadata/edw_utm27_met.html 
 
TCEQ: Texas Commission on Environmental Quality. The state environmental 
protection agency formerly known as the Texas Water Commission and Texas Natural 
Resources Conservation Commission. 
 
Transition zone: regulatory area defined by TCEQ in Chapter 313 as: 
 

“that area where geologic formations crop out in proximity to and south and southeast 
of the recharge zone and where faults, fractures, and other geologic features present a 
possible avenue for recharge of surface water to the Edwards Aquifer, including 
portions of the Del Rio Clay, Buda Limestone, Eagle Ford Group, Austin Chalk, 
Pecan Gap Chalk, and Anacacho Limestone. The transition zone is identified as that 
area designated as such on official maps located in the appropriate regional office and 
groundwater conservation districts” (30 TAC, § 213.3(34). 

 
TSS: Texas Speleological Survey. A volunteer organization that investigates, maps, and 
stores data on Texas caves. 
 
Underlying units:  rock units underlying the Barton Springs Segment including the 
Trinity Group.  
 
WQPL: Water-Quality Protection Lands, acquired by the City of Austin for purposes of 
water-quality protection for the Barton Springs Segment and authorized by a 1999 
Proposition 2 bond election. 
 
Z: depth or extent of straight-line conduit or cave that extends downward vertically or 
horizontally from the entrance aperture. 
 

 

http://www.tceq.state.tx.us/gis/metadata/edw_utm27_met.html
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